Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William P. Risk is active.

Publication


Featured researches published by William P. Risk.


Science | 2014

A million spiking-neuron integrated circuit with a scalable communication network and interface

Paul A. Merolla; John V. Arthur; Rodrigo Alvarez-Icaza; Andrew S. Cassidy; Jun Sawada; Filipp Akopyan; Bryan L. Jackson; Nabil Imam; Chen Guo; Yutaka Nakamura; Bernard Brezzo; Ivan Vo; Steven K. Esser; Rathinakumar Appuswamy; Brian Taba; Arnon Amir; Myron Flickner; William P. Risk; Rajit Manohar; Dharmendra S. Modha

Modeling computer chips on real brains Computers are nowhere near as versatile as our own brains. Merolla et al. applied our present knowledge of the structure and function of the brain to design a new computer chip that uses the same wiring rules and architecture. The flexible, scalable chip operated efficiently in real time, while using very little power. Science, this issue p. 668 A large-scale computer chip mimics many features of a real brain. Inspired by the brain’s structure, we have developed an efficient, scalable, and flexible non–von Neumann architecture that leverages contemporary silicon technology. To demonstrate, we built a 5.4-billion-transistor chip with 4096 neurosynaptic cores interconnected via an intrachip network that integrates 1 million programmable spiking neurons and 256 million configurable synapses. Chips can be tiled in two dimensions via an interchip communication interface, seamlessly scaling the architecture to a cortexlike sheet of arbitrary size. The architecture is well suited to many applications that use complex neural networks in real time, for example, multiobject detection and classification. With 400-pixel-by-240-pixel video input at 30 frames per second, the chip consumes 63 milliwatts.


IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems | 2015

TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip

Filipp Akopyan; Jun Sawada; Andrew S. Cassidy; Rodrigo Alvarez-Icaza; John V. Arthur; Paul A. Merolla; Nabil Imam; Yutaka Nakamura; Pallab Datta; Gi-Joon Nam; Brian Taba; Michael P. Beakes; Bernard Brezzo; Jente B. Kuang; Rajit Manohar; William P. Risk; Bryan L. Jackson; Dharmendra S. Modha

The new era of cognitive computing brings forth the grand challenge of developing systems capable of processing massive amounts of noisy multisensory data. This type of intelligent computing poses a set of constraints, including real-time operation, low-power consumption and scalability, which require a radical departure from conventional system design. Brain-inspired architectures offer tremendous promise in this area. To this end, we developed TrueNorth, a 65 mW real-time neurosynaptic processor that implements a non-von Neumann, low-power, highly-parallel, scalable, and defect-tolerant architecture. With 4096 neurosynaptic cores, the TrueNorth chip contains 1 million digital neurons and 256 million synapses tightly interconnected by an event-driven routing infrastructure. The fully digital 5.4 billion transistor implementation leverages existing CMOS scaling trends, while ensuring one-to-one correspondence between hardware and software. With such aggressive design metrics and the TrueNorth architecture breaking path with prevailing architectures, it is clear that conventional computer-aided design (CAD) tools could not be used for the design. As a result, we developed a novel design methodology that includes mixed asynchronous-synchronous circuits and a complete tool flow for building an event-driven, low-power neurosynaptic chip. The TrueNorth chip is fully configurable in terms of connectivity and neural parameters to allow custom configurations for a wide range of cognitive and sensory perception applications. To reduce the systems communication energy, we have adapted existing application-agnostic very large-scale integration CAD placement tools for mapping logical neural networks to the physical neurosynaptic core locations on the TrueNorth chips. With that, we have successfully demonstrated the use of TrueNorth-based systems in multiple applications, including visual object recognition, with higher performance and orders of magnitude lower power consumption than the same algorithms run on von Neumann architectures. The TrueNorth chip and its tool flow serve as building blocks for future cognitive systems, and give designers an opportunity to develop novel brain-inspired architectures and systems based on the knowledge obtained from this paper.


international symposium on neural networks | 2012

Building block of a programmable neuromorphic substrate: A digital neurosynaptic core

John V. Arthur; Paul A. Merolla; Filipp Akopyan; Rodrigo Alvarez; Andrew S. Cassidy; Shyamal Chandra; Steven K. Esser; Nabil Imam; William P. Risk; Daniel Ben Dayan Rubin; Rajit Manohar; Dharmendra S. Modha

The grand challenge of neuromorphic computation is to develop a flexible brain-inspired architecture capable of a wide array of real-time applications, while striving towards the ultra-low power consumption and compact size of biological neural systems. Toward this end, we fabricated a building block of a modular neuromorphic architecture, a neurosynaptic core. Our implementation consists of 256 integrate-and-fire neurons and a 1,024×256 SRAM crossbar memory for synapses that fits in 4.2mm2 using a 45nm SOI process and consumes just 45pJ per spike. The core is fully configurable in terms of neuron parameters, axon types, and synapse states and its fully digital implementation achieves one-to-one correspondence with software simulation models. One-to-one correspondence allows us to introduce an abstract neural programming model for our chip, a contract guaranteeing that any application developed in software functions identically in hardware. This contract allows us to rapidly test and map applications from control, machine vision, and classification. To demonstrate, we present four test cases (i) a robot driving in a virtual environment, (ii) the classic game of pong, (iii) visual digit recognition and (iv) an autoassociative memory.


Optics Letters | 1987

Room-temperature, continuous-wave, 946-nm Nd:YAG laser pumped by laser-diode arrays and intracavity frequency doubling to 473 nm

William P. Risk; W. Lenth

We report the use of GaAlAs laser-diode arrays to pump a cw Nd:YAG laser operating on the 946-nm (4)F(3/2) ? (4)I(9/2) transition. At room temperature, the lasing threshold was reached with 58 mW of absorbed pump power, and, with 175 mW of absorbed pump power, 42 mW of output power at 946 nm was obtained in a TEM(00) mode by using 0.7% output coupling. In addition, pumping with an infrared dye laser operating in a pure TEM(00) mode was used to investigate the effects of reabsorption loss that are characteristic of the 946-nm laser transition. LiIO(3) was used as an intracavity doubling crystal, and 100 microW of blue light was generated by using diode-laser pumping in a nonoptimized cavity.


international symposium on neural networks | 2013

Cognitive computing building block: A versatile and efficient digital neuron model for neurosynaptic cores

Andrew S. Cassidy; Paul A. Merolla; John V. Arthur; Steven K. Esser; Bryan L. Jackson; Rodrigo Alvarez-Icaza; Pallab Datta; Jun Sawada; Theodore M. Wong; Vitaly Feldman; Arnon Amir; Daniel Ben Dayan Rubin; Filipp Akopyan; Emmett McQuinn; William P. Risk; Dharmendra S. Modha

Marching along the DARPA SyNAPSE roadmap, IBM unveils a trilogy of innovations towards the TrueNorth cognitive computing system inspired by the brains function and efficiency. Judiciously balancing the dual objectives of functional capability and implementation/operational cost, we develop a simple, digital, reconfigurable, versatile spiking neuron model that supports one-to-one equivalence between hardware and simulation and is implementable using only 1272 ASIC gates. Starting with the classic leaky integrate-and-fire neuron, we add: (a) configurable and reproducible stochasticity to the input, the state, and the output; (b) four leak modes that bias the internal state dynamics; (c) deterministic and stochastic thresholds; and (d) six reset modes for rich finite-state behavior. The model supports a wide variety of computational functions and neural codes. We capture 50+ neuron behaviors in a library for hierarchical composition of complex computations and behaviors. Although designed with cognitive algorithms and applications in mind, serendipitously, the neuron model can qualitatively replicate the 20 biologically-relevant behaviors of a dynamical neuron model.


international symposium on neural networks | 2013

Cognitive computing systems: Algorithms and applications for networks of neurosynaptic cores

Steven K. Esser; Alexander Andreopoulos; Rathinakumar Appuswamy; Pallab Datta; Davis; Arnon Amir; John V. Arthur; Andrew S. Cassidy; Myron Flickner; Paul Merolla; Shyamal Chandra; Nicola Basilico; Stefano Carpin; Tom Zimmerman; Frank Zee; Rodrigo Alvarez-Icaza; Jeffrey A. Kusnitz; Theodore M. Wong; William P. Risk; Emmett McQuinn; Tapan Kumar Nayak; Raghavendra Singh; Dharmendra S. Modha

Marching along the DARPA SyNAPSE roadmap, IBM unveils a trilogy of innovations towards the TrueNorth cognitive computing system inspired by the brains function and efficiency. The non-von Neumann nature of the TrueNorth architecture necessitates a novel approach to efficient system design. To this end, we have developed a set of abstractions, algorithms, and applications that are natively efficient for TrueNorth. First, we developed repeatedly-used abstractions that span neural codes (such as binary, rate, population, and time-to-spike), long-range connectivity, and short-range connectivity. Second, we implemented ten algorithms that include convolution networks, spectral content estimators, liquid state machines, restricted Boltzmann machines, hidden Markov models, looming detection, temporal pattern matching, and various classifiers. Third, we demonstrate seven applications that include speaker recognition, music composer recognition, digit recognition, sequence prediction, collision avoidance, optical flow, and eye detection. Our results showcase the parallelism, versatility, rich connectivity, spatio-temporality, and multi-modality of the TrueNorth architecture as well as compositionality of the corelet programming paradigm and the flexibility of the underlying neuron model.


international symposium on neural networks | 2013

Cognitive computing programming paradigm: A Corelet Language for composing networks of neurosynaptic cores

Arnon Amir; Pallab Datta; William P. Risk; Andrew S. Cassidy; Jeffrey A. Kusnitz; Steven K. Esser; Alexander Andreopoulos; Theodore M. Wong; Myron Flickner; Rodrigo Alvarez-Icaza; Emmett McQuinn; Benjamin Shaw; Norm Pass; Dharmendra S. Modha

Marching along the DARPA SyNAPSE roadmap, IBM unveils a trilogy of innovations towards the TrueNorth cognitive computing system inspired by the brains function and efficiency. The sequential programming paradigm of the von Neumann architecture is wholly unsuited for TrueNorth. Therefore, as our main contribution, we develop a new programming paradigm that permits construction of complex cognitive algorithms and applications while being efficient for TrueNorth and effective for programmer productivity. The programming paradigm consists of (a) an abstraction for a TrueNorth program, named Corelet, for representing a network of neurosynaptic cores that encapsulates all details except external inputs and outputs; (b) an object-oriented Corelet Language for creating, composing, and decomposing corelets; (c) a Corelet Library that acts as an ever-growing repository of reusable corelets from which programmers compose new corelets; and (d) an end-to-end Corelet Laboratory that is a programming environment which integrates with the TrueNorth architectural simulator, Compass, to support all aspects of the programming cycle from design, through development, debugging, and up to deployment. The new paradigm seamlessly scales from a handful of synapses and neurons to networks of neurosynaptic cores of progressively increasing size and complexity. The utility of the new programming paradigm is underscored by the fact that we have designed and implemented more than 100 algorithms as corelets for TrueNorth in a very short time span.


ieee international conference on high performance computing data and analytics | 2012

Compass: a scalable simulator for an architecture for cognitive computing

Robert Preissl; Theodore M. Wong; Pallab Datta; Myron Flickner; Raghavendra Singh; Steven K. Esser; William P. Risk; Horst D. Simon; Dharmendra S. Modha

Inspired by the function, power, and volume of the organic brain, we are developing TrueNorth, a novel modular, non-von Neumann, ultra-low power, compact architecture. TrueNorth consists of a scalable network of neurosynaptic cores, with each core containing neurons, dendrites, synapses, and axons. To set sail for TrueNorth, we developed Compass, a multi-threaded, massively parallel functional simulator and a parallel compiler that maps a network of long-distance pathways in the macaque monkey brain to TrueNorth. We demonstrate near-perfect weak scaling on a 16 rack IBM® Blue Gene®/Q (262144 CPUs, 256 TB memory), achieving an unprecedented scale of 256 million neurosynaptic cores containing 65 billion neurons and 16 trillion synapses running only 388x slower than real time with an average spiking rate of 8.1 Hz. By using emerging PGAS communication primitives, we also demonstrate 2x better real-time performance over MPI primitives on a 4 rack Blue Gene/P (16384 CPUs, 16 TB memory).


Applied Physics Letters | 2003

Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection

Y. Kang; H. X. Lu; Y.-H. Lo; Donald S. Bethune; William P. Risk

We propose a physical model that quantitatively describes the behavior of the dark count probability and single-photon quantum efficiency of avalanche diodes under conditions that allow these devices to be used for single-photon detection. The model shows analytically how various physical parameters such as dark current, dc gain, Geiger mode gain, carrier detrap time, pulse repetition rate, etc., can affect the dark count probability and single-photon quantum efficiency of a Geiger mode avalanche photodiode. The theory agrees well with the experimental results.


Journal of Modern Optics | 2004

A high-performance integrated single-photon detector for telecom wavelengths

Donald S. Bethune; William P. Risk; Gary W. Pabst

Abstract A commercial avalanche photodiode (APD) and the circuitry needed to operate it as a single-photon detector (SPD) have been integrated onto a single PC board (PCB). At temperatures accessible with Peltier coolers (∼200–240 K), the PCB-SPD achieves high detection efficiency (DE) at 1308 and 1545 nm with low dark-count probability (e.g. ∼10−6/bias pulse at DE = 20%, 220 K), making it useful for quantum key distribution (QKD). The board generates fast bias pulses, cancels noise transients, amplifies the signals, and sends them to an on-board discriminator. A digital blanking circuit suppresses afterpulsing.

Collaboration


Dive into the William P. Risk's collaboration.

Researchain Logo
Decentralizing Knowledge