Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William P. Robins is active.

Publication


Featured researches published by William P. Robins.


The New England Journal of Medicine | 2011

The Origin of the Haitian Cholera Outbreak Strain

Chen Shan Chin; Jon Sorenson; Jason B. Harris; William P. Robins; Richelle C. Charles; Roger R. Jean-Charles; James Bullard; Dale Webster; Andrew Kasarskis; Paul Peluso; Ellen E. Paxinos; Yoshiharu Yamaichi; Stephen B. Calderwood; John J. Mekalanos; Eric E. Schadt; Matthew K. Waldor

BACKGROUND Although cholera has been present in Latin America since 1991, it had not been epidemic in Haiti for at least 100 years. Recently, however, there has been a severe outbreak of cholera in Haiti. METHODS We used third-generation single-molecule real-time DNA sequencing to determine the genome sequences of 2 clinical Vibrio cholerae isolates from the current outbreak in Haiti, 1 strain that caused cholera in Latin America in 1991, and 2 strains isolated in South Asia in 2002 and 2008. Using primary sequence data, we compared the genomes of these 5 strains and a set of previously obtained partial genomic sequences of 23 diverse strains of V. cholerae to assess the likely origin of the cholera outbreak in Haiti. RESULTS Both single-nucleotide variations and the presence and structure of hypervariable chromosomal elements indicate that there is a close relationship between the Haitian isolates and variant V. cholerae El Tor O1 strains isolated in Bangladesh in 2002 and 2008. In contrast, analysis of genomic variation of the Haitian isolates reveals a more distant relationship with circulating South American isolates. CONCLUSIONS The Haitian epidemic is probably the result of the introduction, through human activity, of a V. cholerae strain from a distant geographic source. (Funded by the National Institute of Allergy and Infectious Diseases and the Howard Hughes Medical Institute.).


Nature Biotechnology | 2012

A hybrid approach for the automated finishing of bacterial genomes

Ali Bashir; Aaron Klammer; William P. Robins; Chen Shan Chin; Dale Webster; Ellen E. Paxinos; David Hsu; Meredith Ashby; Susana Wang; Paul Peluso; Robert Sebra; Jon Sorenson; James Bullard; Jackie Yen; Marie Valdovino; Emilia Mollova; Khai Luong; Steven Lin; Brianna Lamay; Amruta Joshi; Lori A. Rowe; Michael Frace; Cheryl L. Tarr; Maryann Turnsek; Brigid M. Davis; Andrew Kasarskis; John J. Mekalanos; Matthew K. Waldor; Eric E. Schadt

Advances in DNA sequencing technology have improved our ability to characterize most genomic diversity. However, accurate resolution of large structural events is challenging because of the short read lengths of second-generation technologies. Third-generation sequencing technologies, which can yield longer multikilobase reads, have the potential to address limitations associated with genome assembly. Here we combine sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at >99.9% accuracy. Complex regions with clinically relevant structure were completely resolved. In separate control assemblies on experimental and simulated data for the canonical N16961 cholera reference strain, we obtained 14 scaffolds of greater than 1 kb for the experimental data and 8 scaffolds of greater than 1 kb for the simulated data, which allowed us to correct several errors in contigs assembled from the short-read data alone. This work provides a blueprint for the next generation of rapid microbial identification and full-genome assembly.


Nature | 2016

SEDS proteins are a widespread family of bacterial cell wall polymerases

Alexander J. Meeske; Eammon P. Riley; William P. Robins; Tsuyoshi Uehara; John J. Mekalanos; Daniel Kahne; Suzanne Walker; Andrew C. Kruse; Thomas G. Bernhardt; David Z. Rudner

Elongation of rod-shaped bacteria is mediated by a dynamic peptidoglycan-synthetizing machinery called the Rod complex. Here we report that, in Bacillus subtilis, this complex is functional in the absence of all known peptidoglycan polymerases. Cells lacking these enzymes survive by inducing an envelope stress response that increases the expression of RodA, a widely conserved core component of the Rod complex. RodA is a member of the SEDS (shape, elongation, division and sporulation) family of proteins, which have essential but ill-defined roles in cell wall biogenesis during growth, division and sporulation. Our genetic and biochemical analyses indicate that SEDS proteins constitute a family of peptidoglycan polymerases. Thus, B. subtilis and probably most bacteria use two distinct classes of polymerase to synthesize their exoskeleton. Our findings indicate that SEDS family proteins are core cell wall synthases of the cell elongation and division machinery, and represent attractive targets for antibiotic development.


Cell Host & Microbe | 2014

The Acetate Switch of an Intestinal Pathogen Disrupts Host Insulin Signaling and Lipid Metabolism

Saiyu Hang; Alexandra E. Purdy; William P. Robins; Zhipeng Wang; Manabendra Mandal; Sarah Chang; John J. Mekalanos; Paula I. Watnick

Vibrio cholerae is lethal to the model host Drosophila melanogaster through mechanisms not solely attributable to cholera toxin. To examine additional virulence determinants, we performed a genetic screen in V. cholerae-infected Drosophila and identified the two-component system CrbRS. CrbRS controls transcriptional activation of acetyl-CoA synthase-1 (ACS-1) and thus regulates the acetate switch, in which bacteria transition from excretion to assimilation of environmental acetate. The resultant loss of intestinal acetate leads to deactivation of host insulin signaling and lipid accumulation in enterocytes, resulting in host lethality. These metabolic effects are not observed upon infection with ΔcrbS or Δacs1 V. cholerae mutants. Additionally, uninfected flies lacking intestinal commensals, which supply short chain fatty acids (SCFAs) such as acetate, also exhibit altered insulin signaling and intestinal steatosis, which is reversed upon acetate supplementation. Thus, acetate consumption by V. cholerae alters host metabolism, and dietary acetate supplementation may ameliorate some sequelae of cholera.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Coupling mutagenesis and parallel deep sequencing to probe essential residues in a genome or gene

William P. Robins; Shah M. Faruque; John J. Mekalanos

Significance In this work we present a technique called Mut-seq. We show that a very large population of genomes or genes can be mutagenized, selected for growth, and then sequenced to determine which genes or residues are probably essential. Here we have applied this method to T7 bacteriophage and T7-like virus JSF7 of Vibrio cholerae. All essential T7 genes have been previously identified and several DNA replication and transcription proteins have solved structures and are well studied, making this a good model. We use this information to correlate mutability at protein residues with known essentiality, conservation, and predicted structural importance. The sequence of a protein determines its function by influencing its folding, structure, and activity. Similarly, the most conserved residues of orthologous and paralogous proteins likely define those most important. The detection of important or essential residues is not always apparent via sequence alignments because these are limited by the depth of any given genes phylogeny, as well as specificities that relate to each proteins unique biological origin. Thus, there is a need for robust and comprehensive ways of evaluating the importance of specific amino acid residues of proteins of known or unknown function. Here we describe an approach called Mut-seq, which allows the identification of virtually all of the essential residues present in a whole genome through the application of limited chemical mutagenesis, selection for function, and deep parallel genomic sequencing. Here we have applied this method to T7 bacteriophage and T7-like virus JSF7 of Vibrio cholerae.


Journal of Molecular Biology | 2010

The Role of the T7 Gp2 Inhibitor of Host RNA Polymerase in Phage Development

Dhruti Savalia; William P. Robins; Sergei Nechaev; Ian J. Molineux; Konstantin Severinov

Bacteriophage T7 relies on its own RNA polymerase (RNAp) to transcribe its middle and late genes. Early genes, which include the viral RNAp gene, are transcribed by the host RNAp from three closely spaced strong promoters-A1, A2, and A3. One middle T7 gene product, gp2, is a strong inhibitor of the host RNAp. Gp2 is essential and is required late in infection, during phage DNA packaging. Here, we explore the role of gp2 in controlling host RNAp transcription during T7 infection. We demonstrate that in the absence of gp2, early viral transcripts continue to accumulate throughout the infection. Decreasing transcription from early promoter A3 is sufficient to make gp2 dispensable for phage infection. Gp2 also becomes dispensable when an antiterminating element boxA, located downstream of early promoters, is deleted. The results thus suggest that antiterminated transcription by host RNAp from the A3 promoter is interfering with phage development and that the only essential role for gp2 is to prevent this transcription.


Science | 2018

Antagonism toward the intestinal microbiota and its effect on Vibrio cholerae virulence

Wenjing Zhao; Florence Caro; William P. Robins; John J. Mekalanos

Cholera pathogen zaps competition Many bacterial pathogens inject their hosts with virulence effectors delivered by specialist secretion machines. Vibrio cholerae has a type VI secretion system (T6SS) that can be loaded with protein toxins that target eukaryote host cells or kill competing bacteria. Zhao et al. discovered that mutant V. cholerae lacking a T6SS could not compete against Escherichia coli strains in the mouse gut. In contrast, intact V. cholerae readily gained a foothold in the gut of young mice, pumping up inflammatory immune responses and prompting more violent symptoms. Science, this issue p. 210 Cholera bacteria must compete with normal gut microbes to become established and need to provoke diarrhea to ensure transmission. The bacterial type VI secretion system (T6SS) is a nanomachine that delivers toxic effector proteins into target cells, killing them. In mice, we found that the Vibrio cholerae T6SS attacks members of the host commensal microbiota in vivo, facilitating the pathogen’s colonization of the gut. This microbial antagonistic interaction drives measurable changes in the pathogenicity of V. cholerae through enhanced intestinal colonization, expression of bacterial virulence genes, and activation of host innate immune genes. Because ablation of mouse commensals by this enteric pathogen correlated with more severe diarrheal symptoms, we conclude that antagonism toward the gut microbiota could improve the fitness of V. cholerae as a pathogen by elevating its transmission to new susceptible hosts.


Current Topics in Microbiology and Immunology | 2014

Genomic Science in Understanding Cholera Outbreaks and Evolution of Vibrio cholerae as a Human Pathogen

William P. Robins; John J. Mekalanos

Modern genomic and bioinformatic approaches have been applied to interrogate the V. cholerae genome, the role of genomic elements in cholera disease, and the origin, relatedness, and dissemination of epidemic strains. A universal attribute of choleragenic strains includes a repertoire of pathogenicity islands and virulence genes, namely the CTXϕ prophage and Toxin Co-regulated Pilus (TCP) in addition to other virulent genetic elements including those referred to as Seventh Pandemic Islands. During the last decade, the advent of Next Generation Sequencing (NGS) has provided highly resolved and often complete genomic sequences of epidemic isolates in addition to both clinical and environmental strains isolated from geographically unconnected regions. Genomic comparisons of these strains, as was completed during and following the Haitian outbreak in 2010, reveals that most epidemic strains appear closely related, regardless of region of origin. Non-O1 clinical or environmental strains may also possess some virulence islands, but phylogenic analysis of the core genome suggests they are more diverse and distantly related than those isolated during epidemics. Like Haiti, genomic studies that examine both the Vibrio core and pan-genome in addition to Single Nucleotide Polymorphisms (SNPs) conclude that a number of epidemics are caused by strains that closely resemble those in Asia, and often appear to originate there and then spread globally. The accumulation of SNPs in the epidemic strains over time can then be applied to better understand the evolution of the V. cholerae genome as an etiological agent.


Infection and Immunity | 2014

RS1 Satellite Phage Promotes Diversity of Toxigenic Vibrio cholerae by Driving CTX Prophage Loss and Elimination of Lysogenic Immunity

M. Kamruzzaman; William P. Robins; S. M. Nayeemul Bari; Shamsun Nahar; John J. Mekalanos; Shah M. Faruque

ABSTRACT In El Tor biotype strains of toxigenic Vibrio cholerae, the CTXϕ prophage often resides adjacent to a chromosomally integrated satellite phage genome, RS1, which produces RS1ϕ particles by using CTX prophage-encoded morphogenesis proteins. RS1 encodes RstC, an antirepressor against the CTXϕ repressor RstR, which cooperates with the host-encoded LexA protein to maintain CTXϕ lysogeny. We found that superinfection of toxigenic El Tor strains with RS1ϕ, followed by inoculation of the transductants into the adult rabbit intestine, caused elimination of the resident CTX prophage-producing nontoxigenic derivatives at a high frequency. Further studies using recA deletion mutants and a cloned rstC gene showed that the excision event was recA dependent and that introduction of additional copies of the cloned rstC gene instead of infection with RS1ϕ was sufficient to enhance CTXϕ elimination. Our data suggest that once it is excised from the chromosome, the elimination of CTX prophage from host cells is driven by the inability to reestablish CTXϕ lysogeny while RstC is overexpressed. However, with eventual loss of the additional copies of rstC, the nontoxigenic derivatives can act as precursors of new toxigenic strains by acquiring the CTX prophage either through reinfection with CTXϕ or by chitin-induced transformation. These results provide new insights into the role of RS1ϕ in V. cholerae evolution and the emergence of highly pathogenic clones, such as the variant strains associated with recent devastating epidemics of cholera in Asia, sub-Saharan Africa, and Haiti.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Non-O1 Vibrio cholerae unlinked to cholera in Haiti

John J. Mekalanos; William P. Robins; David W. Ussery; Brigid M. Davis; Eric E. Schadt; Matthew K. Waldor

Beginning with the observations of John Snow, many formal epidemiologic and molecular studies have corroborated the idea that cholera toxin-producing Vibrio cholerae (the agent of cholera) can move great distances via human activity. Recently “shoe leather”-based epidemiologic and whole genome-based molecular approaches have provided compelling evidence that the devastating ongoing cholera epidemic in Haiti was caused by a toxigenic strain of V. cholerae O1 that was inadvertently introduced into Haiti by United Nations (UN) security forces from Nepal, a South Asian country that suffered cholera outbreaks only weeks before the UN troops’ deployment (1⇓⇓–4). Hence, we were shocked to read the statement that “…assignment of attribution [for … [↵][1]1To whom correspondence should be addressed. E-mail: john_mekalanos{at}hms.harvard.edu. [1]: #xref-corresp-1-1

Collaboration


Dive into the William P. Robins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew K. Waldor

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Varaporn Vuddhakul

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar

Eric E. Schadt

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jetnapang Kongrueng

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Kasarskis

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Brigid M. Davis

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge