William P. Wysocki
Northern Illinois University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William P. Wysocki.
BMC Evolutionary Biology | 2015
William P. Wysocki; Lynn G. Clark; Lakshmi Attigala; Eduardo Ruiz-Sanchez; Melvin R. Duvall
BackgroundBambusoideae (Poaceae) comprise three distinct and well-supported lineages: tropical woody bamboos (Bambuseae), temperate woody bamboos (Arundinarieae) and herbaceous bamboos (Olyreae). Phylogenetic studies using chloroplast markers have generally supported a sister relationship between Bambuseae and Olyreae. This suggests either at least two origins of the woody bamboo syndrome in this subfamily or its loss in Olyreae.ResultsHere a full chloroplast genome (plastome) phylogenomic study is presented using the coding and noncoding regions of 13 complete plastomes from the Bambuseae, eight from Olyreae and 10 from Arundinarieae. Trees generated using full plastome sequences support the previously recovered monophyletic relationship between Bambuseae and Olyreae. In addition to these relationships, several unique plastome features are uncovered including the first mitogenome-to-plastome horizontal gene transfer observed in monocots.ConclusionsPhylogenomic agreement with previous published phylogenies reinforces the validity of these studies. Additionally, this study presents the first published plastomes from Neotropical woody bamboos and the first full plastome phylogenomic study performed within the herbaceous bamboos. Although the phylogenomic tree presented in this study is largely robust, additional studies using nuclear genes support monophyly in woody bamboos as well as hybridization among previous woody bamboo lineages. The evolutionary history of the Bambusoideae could be further clarified using transcriptomic techniques to increase sampling among nuclear orthologues and investigate the molecular genetics underlying the development of woody and floral tissues.
Aob Plants | 2015
Jeffery M. Saarela; William P. Wysocki; Craig F. Barrett; Robert John Soreng; Jerrold I. Davis; Lynn G. Clark; Scot A. Kelchner; J. Chris Pires; Patrick P. Edger; Dustin R. Mayfield; Melvin R. Duvall
Whole plastid genomes (plastomes) are being sequenced rapidly from across the green plant tree of life, and phylogenetic analyses of these are increasing resolution and support for relationships that were unresolved in earlier studies. The cool-season grass subfamily, Pooideae, includes important temperate cereals, turf grasses and forage species, yet some aspects of deep phylogeny in the lineage are unresolved. We newly sequenced 25 Pooideae plastomes, and conducted phylogenomic analyses of these and 20 existing plastomes from the subfamily. Most aspects of deep relationship in Pooideae are maximally supported in our analyses, including those among early-diverging tribes.
Taxon | 2014
William P. Wysocki; Lynn G. Clark; Scot A. Kelchner; Sean V. Burke; J. Chris Pires; Patrick P. Edger; Dustin R. Mayfield; Jimmy K. Triplett; J. Travis Columbus; Amanda L. Ingram; Melvin R. Duvall
Technological advances have allowed phylogenomic studies of plants, such as full chloroplast genome (plastome) analysis, to become increasingly popular and economically feasible. Although next-generation short-read sequencing allows for full plastomes to be sequenced relatively rapidly, it requires additional attention using software to assemble these reads into comprehensive sequences. Here we compare the use of three de novo assemblers combined with three contig assembly methods. Seven plastome sequences were analyzed. Three of these were Sanger-sequenced. The other four were assembled from short, single-end read files generated from next-generation libraries. These plastomes represented a total of six grass species (Poaceae), one of which was sequenced in duplicate by the two methods to allow direct comparisons for accuracy. Enumeration of missing sequence and ambiguities allowed for assessments of completeness and efficiency. All methods that used de Bruijn-based de novo assemblers were shown to produce assemblies comparable to the Sanger-sequenced plastomes but were not equally efficient. Contig assembly methods that utilized automatable and repeatable processes were generally more efficient and advantageous when applied to larger scale projects with many full plastomes. However, contig assembly methods that were less automatable and required more manual attention did show utility in determining plastomes with lower read depth that were not able to be assembled when automatable procedures were implemented. Although the methods here were used exclusively to generate grass plastomes, these could be applied to other taxonomic groups if previously sequenced plastomes were available. In addition to comparing sequencing methods, a supplemental guide for short-read plastome assembly and applicable scripts were generated for this study.
BMC Plant Biology | 2016
Sean V. Burke; William P. Wysocki; Fernando O. Zuloaga; Joseph M. Craine; J. Chris Pires; Patrick P. Edger; Dustin Mayfield-Jones; Lynn G. Clark; Scot A. Kelchner; Melvin R. Duvall
BackgroundPanicoideae are the second largest subfamily in Poaceae (grass family), with 212 genera and approximately 3316 species. Previous studies have begun to reveal relationships within the subfamily, but largely lack resolution and/or robust support for certain tribal and subtribal groups. This study aims to resolve these relationships, as well as characterize a putative mitochondrial insert in one linage.Results35 newly sequenced Panicoideae plastomes were combined in a phylogenomic study with 37 other species: 15 Panicoideae and 22 from outgroups. A robust Panicoideae topology largely congruent with previous studies was obtained, but with some incongruences with previously reported subtribal relationships. A mitochondrial DNA (mtDNA) to plastid DNA (ptDNA) transfer was discovered in the Paspalum lineage.ConclusionsThe phylogenomic analysis returned a topology that largely supports previous studies. Five previously recognized subtribes appear on the topology to be non-monophyletic. Additionally, evidence for mtDNA to ptDNA transfer was identified in both Paspalum fimbriatum and P. dilatatum, and suggests a single rare event that took place in a common progenitor. Finally, the framework from this study can guide larger whole plastome sampling to discern the relationships in Cyperochloeae, Steyermarkochloeae, Gynerieae, and other incertae sedis taxa that are weakly supported or unresolved.
International Journal of Plant Sciences | 2016
Melvin R. Duvall; Amanda E. Fisher; J. Travis Columbus; Amanda L. Ingram; William P. Wysocki; Sean V. Burke; Lynn G. Clark; Scot A. Kelchner
Premise of research. Studies of complete plastomes have proven informative for our understanding of the molecular evolution and phylogenomics of grasses, but subfamily Chloridoideae has not been included in this research. In previous multilocus studies, specific deep branches, as in the large clade corresponding to Cynodonteae, are not uniformly well supported. Methodology. In this study, a plastome phylogenomic analysis sampled 14 species representing 4 tribes and 10 genera of Chloridoideae. One species was Sanger sequenced, and 14 other species, including outgroups, were sequenced with next-generation sequencing-by-synthesis methods. Plastomes from next-generation sequences were assembled by de novo methods, and the unambiguously aligned coding and noncoding sequences of the entire plastomes were analyzed phylogenetically. Pivotal results. Complete plastomes showed rare genomic changes in Distichlis, Centropodia, and Eragrostis tef that were of potential phylogenomic significance. Phylogenomic analyses showed uniformly strong support for all ingroup relationships except one node in Cynodonteae in which a short internal branch connected long terminal branches. Resolution within this clade was found to be taxon dependent and possibly subject to long-branch attraction artifacts. Conclusions. Our study indicates that the increase in phylogenetic information in sequences of entire plastomes well resolves and strongly supports relationships among tribes and genera of chloridoid grasses. Sampling more species, especially in the Centropodia + Ellisochloa clade and Cynodonteae, will further address relationships in these groups and clarify the evolutionary origins of the subfamily.
Molecular Phylogenetics and Evolution | 2016
Lakshmi Attigala; William P. Wysocki; Melvin R. Duvall; Lynn G. Clark
We explored phylogenetic relationships among the twelve lineages of the temperate woody bamboo clade (tribe Arundinarieae) based on plastid genome (plastome) sequence data. A representative sample of 28 taxa was used and maximum parsimony, maximum likelihood and Bayesian inference analyses were conducted to estimate the Arundinarieae phylogeny. All the previously recognized clades of Arundinarieae were supported, with Ampelocalamus calcareus (Clade XI) as sister to the rest of the temperate woody bamboos. Well supported sister relationships between Bergbambos tessellata (Clade I) and Thamnocalamus spathiflorus (Clade VII) and between Kuruna (Clade XII) and Chimonocalmus (Clade III) were revealed by the current study. The plastome topology was tested by taxon removal experiments and alternative hypothesis testing and the results supported the current plastome phylogeny as robust. Neighbor-net analyses showed few phylogenetic signal conflicts, but suggested some potentially complex relationships among these taxa. Analyses of morphological character evolution of rhizomes and reproductive structures revealed that pachymorph rhizomes were most likely the ancestral state in Arundinarieae. In contrast leptomorph rhizomes either evolved once with reversions to the pachymorph condition or multiple times in Arundinarieae. Further, pseudospikelets evolved independently at least twice in the Arundinarieae, but the ancestral state is ambiguous.
BMC Genomics | 2016
William P. Wysocki; Eduardo Ruiz-Sanchez; Yanbin Yin; Melvin R. Duvall
BackgroundNext-generation sequencing now allows for total RNA extracts to be sequenced in non-model organisms such as bamboos, an economically and ecologically important group of grasses. Bamboos are divided into three lineages, two of which are woody perennials with bisexual flowers, which undergo gregarious monocarpy. The third lineage, which are herbaceous perennials, possesses unisexual flowers that undergo annual flowering events.ResultsTranscriptomes were assembled using both reference-based and de novo methods. These two methods were tested by characterizing transcriptome content using sequence alignment to previously characterized reference proteomes and by identifying Pfam domains. Because of the striking differences in floral morphology and phenology between the herbaceous and woody bamboo lineages, MADS-box genes, transcription factors that control floral development and timing, were characterized and analyzed in this study. Transcripts were identified using phylogenetic methods and categorized as A, B, C, D or E-class genes, which control floral development, or SOC or SVP-like genes, which control the timing of flowering events. Putative nuclear orthologues were also identified in bamboos to use as phylogenetic markers.ConclusionsInstances of gene copies exhibiting topological patterns that correspond to shared phenotypes were observed in several gene families including floral development and timing genes. Alignments and phylogenetic trees were generated for 3,878 genes and for all genes in a concatenated analysis. Both the concatenated analysis and those of 2,412 separate gene trees supported monophyly among the woody bamboos, which is incongruent with previous phylogenetic studies using plastid markers.
Journal of Applied Ecology | 2017
Nicholas A. Barber; Holly P. Jones; Melvin R. Duvall; William P. Wysocki; Michael J. Hansen; David J. Gibson
losses over time in restored tallgrass prairie plant communities Nicholas A. Barber*, Holly P. Jones, Melvin R. Duvall, William P. Wysocki, Michael J. Hansen and David J. Gibson Department of Biological Sciences and Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, IL 60115, USA; Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA; University of Wisconsin Arboretum, Madison, WI 53711, USA; and Department of Plant Biology and Center for Ecology, Southern Illinois University, Carbondale, IL 62901, USA
Frontiers in Plant Science | 2016
Sean V. Burke; Choun-Sea Lin; William P. Wysocki; Lynn G. Clark; Melvin R. Duvall
Studies of complete plastomes have proven informative for our understanding of the molecular evolution and phylogenomics of grasses. In this study, a plastome phylogenomic analysis sampled species from lineages of deeply diverging grasses including Streptochaeta spicata (Anomochlooideae), Leptaspis banksii, and L. zeylanica (both Pharoideae). Plastomes from next generation sequences for three species were assembled by de novo methods. The unambiguously aligned coding and non-coding sequences of the entire plastomes were aligned with those from 43 other grasses and the outgroup Joinvillea ascendens. Outgroup sampling of grasses has previously posed a challenge for plastome phylogenomic studies because of major rearrangements of the plastome. Here, over 81,000 bases of homologous sequence were aligned for phylogenomic and divergence estimation analyses. Rare genomic changes, including persistently long ψycf1 and ψycf2 loci, the loss of the rpoC1 intron, and a 21 base tandem repeat insert in the coding sequence for rps19 defined branch points in the grass phylogeny. Marked differences were seen in the topologies inferred from the complete plastome and two gene matrices, and mean maximum likelihood support values for the former were 10% higher. In the full plastome phylogenomic analyses, the two species of Anomochlooideae were monophyletic. Leptaspis and Pharus were found to be reciprocally monophyletic, with the estimated divergence of two Leptaspis species preceding those of Pharus by over 14 Ma, consistent with historical biogeography. Our estimates for deep divergences among grasses were older than previous such estimates, likely influenced by more complete taxonomic and molecular sampling and the use of recently available or previously unused fossil calibration points.
American Journal of Botany | 2017
Melvin R. Duvall; S. R. Yadav; Sean V. Burke; William P. Wysocki
PREMISE OF THE STUDY We investigated the little-studied Arundinoideae/Micrairoideae clade of grasses with an innovative plastome phylogenomic approach. This method gives robust results for taxa of uncertain phylogenetic placement. Arundinoideae comprise ∼45 species, although historically was much larger. Arundinoideae is notable for the widely invasive Phragmites australis. Micrairoideae comprise nine genera and ∼200 species. Some are threatened with extinction, including Hubbardia, some Isachne spp., and Limnopoa. Two micrairoid genera, Eriachne and Pheidochloa, exhibit C4 photosynthesis in this otherwise C3 subfamily and represent an independent origin of the C4 pathway among grasses. METHODS Five new plastomes were sequenced with next-generation sequencing-by-synthesis methods. Plastomes were assembled by de novo methods and phylogenetically analyzed with eight other recently published arundinoid or micrairoid plastomes and 11 outgroup species. Stable carbon isotope ratios were determined for micrairoid and arundinoid species to investigate ambiguities in the proxy evidence for C4 photosynthesis. KEY RESULTS Phylogenomic analyses showed strong support for ingroup nodes in the Arundinoideae/Micrairoideae subtree, including a paraphyletic clade of Hubbardieae with Isachneae. Anatomical, biochemical, and positively selected sites data are ambiguous with regard to the photosynthetic pathways in Micrairoideae. Species of Hubbardia, Isachne, and Limnopoa were definitively shown by δ13C measurements to be C3 and Eriachne to be C4. CONCLUSIONS Our plastome phylogenomic analyses for Micrairoideae are the first phylogenetic results to indicate paraphyly between Isachneae and Hubbardieae. The definitive δ13C data for four genera of Micrairoideae indicates the breadth of variation possible in the proxy evidence for photosynthetic pathways of both C3 and C4 taxa.