William R. Kobertz
University of Massachusetts Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William R. Kobertz.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Trevor J. Morin; William R. Kobertz
Ion channels are multisubunit proteins responsible for the generation and propagation of action potentials in nerve, skeletal muscle, and heart as well as maintaining salt and water homeostasis in epithelium. The subunit composition and stoichiometry of these membrane protein complexes underlies their physiological function, as different cells pair ion-conducting α-subunits with specific regulatory β-subunits to produce complexes with diverse ion-conducting and gating properties. However, determining the number of α- and β-subunits in functioning ion channel complexes is challenging and often fraught with contradictory results. Here we describe the synthesis of a chemically releasable, irreversible K+ channel inhibitor and its iterative application to tally the number of β-subunits in a KCNQ1/KCNE1 K+ channel complex. Using this inhibitor in electrical recordings, we definitively show that there are two KCNE subunits in a functioning tetrameric K+ channel, breaking the apparent fourfold arrangement of the ion-conducting subunits. This digital determination rules out any measurable contribution from supra, sub, and multiple stoichiometries, providing a uniform structural picture to interpret KCNE β-subunit modulation of voltage-gated K+ channels and the inherited mutations that cause dysfunction. Moreover, the architectural asymmetry of the K+ channel complex affords a unique opportunity to therapeutically target ion channels that coassemble with KCNE β-subunits.
Journal of Biological Chemistry | 2006
Kshama D. Chandrasekhar; Tuba Bas; William R. Kobertz
KCNE peptides are a class of type I transmembrane β subunits that assemble with and modulate the gating and ion conducting properties of a variety of voltage-gated K+ channels. Accordingly, mutations that disrupt the assembly and trafficking of KCNE-K+ channel complexes give rise to disease. The cellular mechanisms responsible for ensuring that KCNE peptides assemble with voltage-gated K+ channels have yet to be elucidated. Using enzymatic deglycosylation, immunofluorescence, and quantitative cell surface labeling experiments, we show that KCNE1 peptides are retained in the early stages of the secretory pathway until they co-assemble with specific K+ channel subunits; co-assembly mediates KCNE1 progression through the secretory pathway and results in cell surface expression. We also address an apparent discrepancy between our results and a previous study in human embryonic kidney cells, which showed wild type KCNE1 peptides can reach the plasma membrane without exogenously expressed K+ channel subunits. By comparing KCNE1 trafficking in three cell lines, our data suggest that the errant KCNE1 trafficking observed in human embryonic kidney cells may be due, in part, to the presence of endogenous voltage-gated K+ channels in these cells.
The Journal of General Physiology | 2008
Jessica M. Rocheleau; William R. Kobertz
KCNQ1 voltage-gated K+ channels assemble with the family of KCNE type I transmembrane peptides to afford membrane-embedded complexes with diverse channel gating properties. KCNQ1/KCNE1 complexes generate the very slowly activating cardiac IKs current, whereas assembly with KCNE3 produces a constitutively conducting complex involved in K+ recycling in epithelia. To determine whether these two KCNE peptides influence voltage sensing in KCNQ1 channels, we monitored the position of the S4 voltage sensor in KCNQ1/KCNE complexes using cysteine accessibility experiments. A panel of KCNQ1 S4 cysteine mutants was expressed in Xenopus oocytes, treated with the membrane-impermeant cysteine-specific reagent 2-(trimethylammonium) ethyl methanethiosulfonate (MTSET), and the voltage-dependent accessibility of each mutant was determined. Of these S4 cysteine mutants, three (R228C, G229C, I230C) were modified by MTSET only when KCNQ1 was depolarized. We then employed these state-dependent residues to determine how assembly with KCNE1 and KCNE3 affects KCNQ1 voltage sensor equilibrium and equilibration rates. In the presence of KCNE1, MTSET modification rates for the majority of the cysteine mutants were ∼10-fold slower, as was recently reported to indicate that the kinetics of the KCNQ1 voltage sensor are slowed by KCNE1 (Nakajo, K., and Y. Kubo. 2007 J. Gen. Physiol. 130:269–281). Since MTS modification rates reflect an amalgam of reagent accessibility, chemical reactivity, and protein conformational changes, we varied the depolarization pulse duration to determine whether KCNE1 slows the equilibration rate of the voltage sensors. Using the state-dependent cysteine mutants, we determined that MTSET modification rates were essentially independent of depolarization pulse duration. These results demonstrate that upon depolarization the voltage sensors reach equilibrium quickly in the presence of KCNE1 and the slow gating of the channel complex is not due to slowly moving voltage sensors. In contrast, all cysteine substitutions in the S4 of KCNQ1/KCNE3 complexes were freely accessible to MTSET independent of voltage, which is consistent with KCNE3 shifting the voltage sensor equilibrium to favor the active state at hyperpolarizing potentials. In total, these results suggest that KCNE peptides differently modulate the voltage sensor in KCNQ1 K+ channels.
Journal of the American Society for Mass Spectrometry | 1998
Lisa A. Marzilli; David T. Wang; William R. Kobertz; John M. Essigmann; Paul Vouros
The biological consequences of a carcinogen—DNA adduct are defined by the structure of the lesion and its position within the genome. Electrospray ionization ion trap mass spectrometry (ESI-ITMS) is shown here to be a sensitive and rapid approach capable of defining both of these parameters. Three isomeric oligonucleotides of the sequence 5′-CCGGAGGCC modified by the potent human carcinogen aflatoxin B1 (AFB1) at different guanines were analyzed by ESI-ITMS. All three samples possessed the same molecular ion confirming the presence of an intact aflatoxin moiety in each oligonucleotide. In addition, each sample displayed a characteristic fragmentation pattern that permitted unambiguous identification of the site of modification within the sequence. Furthermore, an AFB1-modified oligonucleotide was converted under alkaline conditions to its more stable formamidopyrimidine (FAPY) derivative. Analysis of this sample revealed the presence of a molecular ion corresponding to the presence of the FAPY adduct and a distinctive fragmentation pattern that paralleled the known chemical stability of the FAPY metabolite. This approach should be of general use in the determination of not only the nature and site of covalent modifications, but also the chemical stability of DNA adducts.
The Journal of General Physiology | 2010
Anatoli Lvov; Steven D. Gage; Virla M. Berrios; William R. Kobertz
KCNQ1 channels assemble with KCNE1 transmembrane (TM) peptides to form voltage-gated K+ channel complexes with slow activation gate opening. The cytoplasmic C-terminal domain that abuts the KCNE1 TM segment has been implicated in regulating KCNQ1 gating, yet its interaction with KCNQ1 has not been described. Here, we identified a protein–protein interaction between the KCNE1 C-terminal domain and the KCNQ1 S6 activation gate and S4–S5 linker. Using cysteine cross-linking, we biochemically screened over 300 cysteine pairs in the KCNQ1–KCNE1 complex and identified three residues in KCNQ1 (H363C, P369C, and I257C) that formed disulfide bonds with cysteine residues in the KCNE1 C-terminal domain. Statistical analysis of cross-link efficiency showed that H363C preferentially reacted with KCNE1 residues H73C, S74C, and D76C, whereas P369C showed preference for only D76C. Electrophysiological investigation of the mutant K+ channel complexes revealed that the KCNQ1 residue, H363C, formed cross-links not only with KCNE1 subunits, but also with neighboring KCNQ1 subunits in the complex. Cross-link formation involving the H363C residue was state dependent, primarily occurring when the KCNQ1–KCNE1 complex was closed. Based on these biochemical and electrophysiological data, we generated a closed-state model of the KCNQ1–KCNE1 cytoplasmic region where these protein–protein interactions are poised to slow activation gate opening.
The Journal of General Physiology | 2006
Jessica M. Rocheleau; Steven D. Gage; William R. Kobertz
Type I transmembrane KCNE peptides contain a conserved C-terminal cytoplasmic domain that abuts the transmembrane segment. In KCNE1, this region is required for modulation of KCNQ1 K+ channels to afford the slowly activating cardiac IKs current. We utilized alanine/leucine scanning to determine whether this region possesses any secondary structure and to identify the KCNE1 residues that face the KCNQ1 channel complex. Helical periodicity analysis of the mutation-induced perturbations in voltage activation and deactivation kinetics of KCNQ1-KCNE1 complexes defined that the KCNE1 C terminus is α-helical when split in half at a conserved proline residue. This helical rendering assigns all known long QT mutations in the KCNE1 C-terminal domain as protein facing. The identification of a secondary structure within the KCNE1 C-terminal domain provides a structural scaffold to map protein–protein interactions with the pore-forming KCNQ1 subunit as well as the cytoplasmic regulatory proteins anchored to KCNQ1–KCNE complexes.
The Journal of Physiology | 2011
Kshama D. Chandrasekhar; Anatoli Lvov; Cecile Terrenoire; Grace Y. Gao; Robert S. Kass; William R. Kobertz
Non‐technical summary Post‐translational modification of cardiac ion channels is a cellular mechanism for maintaining the rhythmicity of the heartbeat. We show that an essential regulatory subunit (KCNE1) of the cardiac IKs potassium channel complex is glycosylated at threonine‐7 in vivo. Mutations that prevent glycosylation at this amino acid result in cardiac IKs complexes that are unable to efficiently traffic to the plasma membrane. These results provide a cellular mechanism for a KCNE1 mutation (T7I) that has been associated with cardiac arrhythmias.
PLOS ONE | 2009
Karen Mruk; William R. Kobertz
KCNQ1 voltage-gated K+ channels (Kv7.1) associate with the family of five KCNE peptides to form complexes with diverse gating properties and pharmacological sensitivities. The varied gating properties of the different KCNQ1-KCNE complexes enables the same K+ channel to function in both excitable and non excitable tissues. Small molecule activators would be valuable tools for dissecting the gating mechanisms of KCNQ1-KCNE complexes; however, there are very few known activators of KCNQ1 channels and most are ineffective on the physiologically relevant KCNQ1-KCNE complexes. Here we show that a simple boronic acid, phenylboronic acid (PBA), activates KCNQ1/KCNE1 complexes co-expressed in Xenopus oocytes at millimolar concentrations. PBA shifts the voltage sensitivity of KCNQ1 channel complexes to favor the open state at negative potentials. Analysis of different-sized charge carriers revealed that PBA also targets the permeation pathway of KCNQ1 channels. Activation by the boronic acid moiety has some specificity for the Kv7 family members (KCNQ1, KCNQ2/3, and KCNQ4) since PBA does not activate Shaker or hERG channels. Furthermore, the commercial availability of numerous PBA derivatives provides a large class of compounds to investigate the gating mechanisms of KCNQ1-KCNE complexes.
Journal of Molecular Biology | 2011
Jianli Lu; Zhengmao Hua; William R. Kobertz; Carol Deutsch
Although we have numerous structures of ribosomes, none disclose side-chain rearrangements of the nascent peptide during chain elongation. This study reports for the first time that rearrangement of the peptide and/or tunnel occurs in distinct regions of the tunnel and is directed by the unique primary sequence of each nascent peptide. In the tunnel mid-region, the accessibility of an introduced cysteine to a series of novel hydrophilic maleimide reagents increases with increasing volume of the adjacent chain residue, a sensitivity not manifest at the constriction and exit port. This surprising result reveals molecular movements not yet resolvable from structural studies. These findings map solvent-accessible volumes along the tunnel and provide novel insights critical to our understanding of allosteric communication within the ribosomal tunnel, translational arrest, chaperone interaction, folding, and rates of elongation.
Journal of Biological Chemistry | 2011
Tuba Bas; Grace Y. Gao; Anatoli Lvov; Kshama D. Chandrasekhar; Reid Gilmore; William R. Kobertz
N-Glycosylation of membrane proteins is critical for their proper folding, co-assembly and subsequent matriculation through the secretory pathway. Here, we examine the kinetics of N-glycan addition to type I transmembrane KCNE1 K+ channel β-subunits, where point mutations that prevent N-glycosylation at one consensus site give rise to disorders of the cardiac rhythm and congenital deafness. We show that KCNE1 has two distinct N-glycosylation sites: a typical co-translational site and a consensus site ∼20 residues away that unexpectedly acquires N-glycans after protein synthesis (post-translational). Mutations that ablate the co-translational site concomitantly reduce glycosylation at the post-translational site, resulting in unglycosylated KCNE1 subunits that cannot reach the cell surface with their cognate K+ channel. This long range inhibition is highly specific for post-translational N-glycosylation because mutagenic conversion of the KCNE1 post-translational site into a co-translational site restored both monoglycosylation and anterograde trafficking. These results directly explain how a single point mutation can prevent N-glycan attachment at multiple sites, providing a new biogenic mechanism for human disease.