Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William R. L. Anderegg is active.

Publication


Featured researches published by William R. L. Anderegg.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Expert credibility in climate change.

William R. L. Anderegg; James W. Prall; Jacob Harold; Stephen H. Schneider

Although preliminary estimates from published literature and expert surveys suggest striking agreement among climate scientists on the tenets of anthropogenic climate change (ACC), the American public expresses substantial doubt about both the anthropogenic cause and the level of scientific agreement underpinning ACC. A broad analysis of the climate scientist community itself, the distribution of credibility of dissenting researchers relative to agreeing researchers, and the level of agreement among top climate experts has not been conducted and would inform future ACC discussions. Here, we use an extensive dataset of 1,372 climate researchers and their publication and citation data to show that (i) 97–98% of the climate researchers most actively publishing in the field surveyed here support the tenets of ACC outlined by the Intergovernmental Panel on Climate Change, and (ii) the relative climate expertise and scientific prominence of the researchers unconvinced of ACC are substantially below that of the convinced researchers.


New Phytologist | 2015

Tree mortality from drought, insects, and their interactions in a changing climate

William R. L. Anderegg; Jeffrey A. Hicke; Rosie A. Fisher; Craig D. Allen; Juliann E. Aukema; Barbara J. Bentz; Sharon M. Hood; Jeremy W. Lichstein; Alison K. Macalady; Nate G. McDowell; Yude Pan; Kenneth F. Raffa; Anna Sala; John D. Shaw; Nathan L. Stephenson; Christina L. Tague; Melanie Zeppel

Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects - bark beetles and defoliators - which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree-insect interactions will better inform projections of forest ecosystem responses to climate change.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe

William R. L. Anderegg; Tamir Klein; Megan K. Bartlett; Lawren Sack; Adam F. A. Pellegrini; Brendan Choat; Steven Jansen

Significance Predicting the impacts of climate extremes on plant communities is a central challenge in ecology. Physiological traits may improve prediction of drought impacts on forests globally. We perform a meta-analysis across 33 studies that span all forested biomes and find that, among the examined traits, hydraulic traits explain cross-species patterns in mortality from drought. Gymnosperm and angiosperm mortality was associated with different hydraulic traits, giving insight into the relative weights of different traits and mechanisms in mortality prediction. Our results provide a foundation for more mechanistic predictions of drought-induced tree mortality across Earth’s diverse forests. Drought-induced tree mortality has been observed globally and is expected to increase under climate change scenarios, with large potential consequences for the terrestrial carbon sink. Predicting mortality across species is crucial for assessing the effects of climate extremes on forest community biodiversity, composition, and carbon sequestration. However, the physiological traits associated with elevated risk of mortality in diverse ecosystems remain unknown, although these traits could greatly improve understanding and prediction of tree mortality in forests. We performed a meta-analysis on species’ mortality rates across 475 species from 33 studies around the globe to assess which traits determine a species’ mortality risk. We found that species-specific mortality anomalies from community mortality rate in a given drought were associated with plant hydraulic traits. Across all species, mortality was best predicted by a low hydraulic safety margin—the difference between typical minimum xylem water potential and that causing xylem dysfunction—and xylem vulnerability to embolism. Angiosperms and gymnosperms experienced roughly equal mortality risks. Our results provide broad support for the hypothesis that hydraulic traits capture key mechanisms determining tree death and highlight that physiological traits can improve vegetation model prediction of tree mortality during climate extremes.


Trends in Plant Science | 2012

Linking definitions, mechanisms, and modeling of drought-induced tree death

William R. L. Anderegg; Joseph A. Berry; Christopher B. Field

Tree death from drought and heat stress is a critical and uncertain component in forest ecosystem responses to a changing climate. Recent research has illuminated how tree mortality is a complex cascade of changes involving interconnected plant systems over multiple timescales. Explicit consideration of the definitions, dynamics, and temporal and biological scales of tree mortality research can guide experimental and modeling approaches. In this review, we draw on the medical literature concerning human death to propose a water resource-based approach to tree mortality that considers the tree as a complex organism with a distinct growth strategy. This approach provides insight into mortality mechanisms at the tree and landscape scales and presents promising avenues into modeling tree death from drought and temperature stress.


Tree Physiology | 2015

Non-structural carbohydrates in woody plants compared among laboratories

Audrey G. Quentin; Elizabeth A. Pinkard; Michael G. Ryan; David T. Tissue; L. Scott Baggett; Henry D. Adams; Pascale Maillard; Jacqueline Marchand; Simon M. Landhäusser; André Lacointe; Yves Gibon; William R. L. Anderegg; Shinichi Asao; Owen K. Atkin; Marc Bonhomme; Cj Claye; Pak S. Chow; Anne Clément-Vidal; Noel W. Davies; L. Turin Dickman; Rita Dumbur; David S. Ellsworth; Kristen Falk; Lucía Galiano; José M. Grünzweig; Henrik Hartmann; Günter Hoch; Sharon M. Hood; Je Jones; Takayoshi Koike

Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g(-1) for soluble sugars, 6-533 (mean = 94) mg g(-1) for starch and 53-649 (mean = 153) mg g(-1) for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R(2) = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g(-1) for total NSC, compared with the range of laboratory estimates of 596 mg g(-1). Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods.


Nature Ecology and Evolution | 2017

A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

Henry D. Adams; Melanie Zeppel; William R. L. Anderegg; Henrik Hartmann; Simon M. Landhäusser; David T. Tissue; Travis E. Huxman; Patrick J. Hudson; Trenton E. Franz; Craig D. Allen; Leander D. L. Anderegg; Greg A. Barron-Gafford; David J. Beerling; David D. Breshears; Timothy J. Brodribb; Harald Bugmann; Richard C. Cobb; Adam D. Collins; L. Turin Dickman; Honglang Duan; Brent E. Ewers; Lucía Galiano; David A. Galvez; Núria Garcia-Forner; Monica L. Gaylord; Matthew J. Germino; Arthur Gessler; Uwe G. Hacke; Rodrigo Hakamada; Andy Hector

Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere–atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.The mechanisms underlying drought-induced tree mortality are not fully resolved. Here, the authors show that, across multiple tree species, loss of xylem conductivity above 60% is associated with mortality, while carbon starvation is not universal.


New Phytologist | 2015

Research frontiers in drought-induced tree mortality: Crossing scales and disciplines

Henrik Hartmann; Henry D. Adams; William R. L. Anderegg; Steven Jansen; Melanie Zeppel

Sudden and widespread forest die-back and die-off (e.g., Huang & Anderegg, 2012) and increased mortality rates (e.g., Peng et al., 2011) in many forest ecosystems across the globe have been linked to drought and elevated temperatures (Allen et al., 2010, Fig. 1). Furthermore, these observations have caused a focus on the physiological mechanisms of drought-induced tree mortality (e.g. McDowell et al., 2008) and many studies, both observational and manipulative, have been carried out to explain tree death during drought from a physiological perspective.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Optimal stomatal behavior with competition for water and risk of hydraulic impairment

Adam Wolf; William R. L. Anderegg; Stephen W. Pacala

Significance Plants lose water and take up carbon through stomata, whose behavior has major influences on global carbon and water fluxes. Yet both competition for water and the potential fitness costs of hydraulic damage during water stress could alter how stomata behave. Here, we add variable xylem conductivity to water and carbon costs of low-xylem water potentials to the classic stomatal optimization and a pure carbon-maximization optimization. We show that both optimizations can reproduce known stomatal responses to environmental conditions but that the pure carbon-maximization optimization is also consistent with competition for water. We describe a new measure—the marginal xylem tension efficiency—that can be used to test stomatal optimizations. For over 40 y the dominant theory of stomatal behavior has been that plants should open stomates until the carbon gained by an infinitesimal additional opening balances the additional water lost times a water price that is constant at least over short periods. This theory has persisted because of its remarkable success in explaining strongly supported simple empirical models of stomatal conductance, even though we have also known for over 40 y that the theory is not consistent with competition among plants for water. We develop an alternative theory in which plants maximize carbon gain without pricing water loss and also add two features to both this and the classical theory, which are strongly supported by empirical evidence: (i) water flow through xylem that is progressively impaired as xylem water potential drops and (ii) fitness or carbon costs associated with low water potentials caused by a variety of mechanisms, including xylem damage repair. We show that our alternative carbon-maximization optimization is consistent with plant competition because it yields an evolutionary stable strategy (ESS)—species with the ESS stomatal behavior that will outcompete all others. We further show that, like the classical theory, the alternative theory also explains the functional forms of empirical stomatal models. We derive ways to test between the alternative optimization criteria by introducing a metric—the marginal xylem tension efficiency, which quantifies the amount of photosynthesis a plant will forego from opening stomatal an infinitesimal amount more to avoid a drop in water potential.


New Phytologist | 2011

Mechanistic causes of tree drought mortality : recent results, unresolved questions and future research needs

Melanie Zeppel; Henry D. Adams; William R. L. Anderegg

2010. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem. Global Change Biology 16: 2676–2687. Lin DL, Xia JY, Wan SQ. 2010. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytologist 188: 187–198. Schimel JP, Weintraub MN. 2003. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology & Biochemistry 35: 549–556. Schmitz O. 2010. Resolving ecosystem complexity. Princeton, NJ, USA: Princeton University Press. Suseela V, Conant RT, Wallenstein MD, Dukes JS. 2011. Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Global Change Biology. doi: 10.1111/j.1365-2486.2011.02516.x Tharayil N, Suseela V, Triebwasser DJ, Preston CM, Gerard PD, Dukes JS. 2011. Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: climatic stress-induced tannins are more reactive. New Phytologist 191: 132–145. Wan S, Norby RJ, Ledford J, Weltzin JF. 2007. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in an old-field grassland. Global Change Biology 13: 2411–2424.


Nature | 2017

Global patterns of drought recovery.

Christopher R. Schwalm; William R. L. Anderegg; Anna M. Michalak; Joshua B. Fisher; Franco Biondi; George W. Koch; Marcy E. Litvak; Kiona Ogle; John D. Shaw; Adam Wolf; Deborah N. Huntzinger; Kevin Schaefer; R. B. Cook; Yaxing Wei; Yuanyuan Fang; Daniel J. Hayes; Maoyi Huang; Atul K. Jain; Hanqin Tian

Drought, a recurring phenomenon with major impacts on both human and natural systems, is the most widespread climatic extreme that negatively affects the land carbon sink. Although twentieth-century trends in drought regimes are ambiguous, across many regions more frequent and severe droughts are expected in the twenty-first century. Recovery time—how long an ecosystem requires to revert to its pre-drought functional state—is a critical metric of drought impact. Yet the factors influencing drought recovery and its spatiotemporal patterns at the global scale are largely unknown. Here we analyse three independent datasets of gross primary productivity and show that, across diverse ecosystems, drought recovery times are strongly associated with climate and carbon cycle dynamics, with biodiversity and CO2 fertilization as secondary factors. Our analysis also provides two key insights into the spatiotemporal patterns of drought recovery time: first, that recovery is longest in the tropics and high northern latitudes (both vulnerable areas of Earth’s climate system) and second, that drought impacts (assessed using the area of ecosystems actively recovering and time to recovery) have increased over the twentieth century. If droughts become more frequent, as expected, the time between droughts may become shorter than drought recovery time, leading to permanently damaged ecosystems and widespread degradation of the land carbon sink.

Collaboration


Dive into the William R. L. Anderegg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederick C. Meinzer

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cho-ying Huang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

David Medvigy

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge