Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William T. Pu is active.

Publication


Featured researches published by William T. Pu.


Nature Medicine | 2007

Endothelial-to-mesenchymal transition contributes to cardiac fibrosis

Oleg Tarnavski; Michael Zeisberg; Adam L. Dorfman; Julie R. McMullen; Erika Gustafsson; Anil Chandraker; Xueli Yuan; William T. Pu; Anita B. Roberts; Eric G. Neilson; Mohamed H. Sayegh; Seigo Izumo; Raghu Kalluri

Cardiac fibrosis, associated with a decreased extent of microvasculature and with disruption of normal myocardial structures, results from excessive deposition of extracellular matrix, which is mediated by the recruitment of fibroblasts. The source of these fibroblasts is unclear and specific anti-fibrotic therapies are not currently available. Here we show that cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT) similar to events that occur during formation of the atrioventricular cushion in the embryonic heart. Transforming growth factor-β1 (TGF-β1) induced endothelial cells to undergo EndMT, whereas bone morphogenic protein 7 (BMP-7) preserved the endothelial phenotype. The systemic administration of recombinant human BMP-7 (rhBMP-7) significantly inhibited EndMT and the progression of cardiac fibrosis in mouse models of pressure overload and chronic allograft rejection. Our findings show that EndMT contributes to the progression of cardiac fibrosis and that rhBMP-7 can be used to inhibit EndMT and to intervene in the progression of chronic heart disease associated with fibrosis.


Nature | 2008

Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart

Bin Zhou; Qing Ma; Satish K. Rajagopal; Sean M. Wu; Ibrahim J. Domian; José Rivera-Feliciano; Dawei Jiang; Alexander von Gise; Sadakatsu Ikeda; Kenneth R. Chien; William T. Pu

The heart is formed from cardiogenic progenitors expressing the transcription factors Nkx2-5 and Isl1 (refs 1 and 2). These multipotent progenitors give rise to cardiomyocyte, smooth muscle and endothelial cells, the major lineages of the mature heart. Here we identify a novel cardiogenic precursor marked by expression of the transcription factor Wt1 and located within the epicardium—an epithelial sheet overlying the heart. During normal murine heart development, a subset of these Wt1+ precursors differentiated into fully functional cardiomyocytes. Wt1+ proepicardial cells arose from progenitors that express Nkx2-5 and Isl1, suggesting that they share a developmental origin with multipotent Nkx2-5+ and Isl1+ progenitors. These results identify Wt1+ epicardial cells as previously unrecognized cardiomyocyte progenitors, and lay the foundation for future efforts to harness the cardiogenic potential of these progenitors for cardiac regeneration and repair.


Nature | 2011

De novo cardiomyocytes from within the activated adult heart after injury

Nicola Smart; Sveva Bollini; Karina N. Dubé; Joaquim M. Vieira; Bin Zhou; Sean M. Davidson; Derek M. Yellon; Johannes Riegler; Anthony N. Price; Mark F. Lythgoe; William T. Pu; Paul R. Riley

A significant bottleneck in cardiovascular regenerative medicine is the identification of a viable source of stem/progenitor cells that could contribute new muscle after ischaemic heart disease and acute myocardial infarction. A therapeutic ideal—relative to cell transplantation—would be to stimulate a resident source, thus avoiding the caveats of limited graft survival, restricted homing to the site of injury and host immune rejection. Here we demonstrate in mice that the adult heart contains a resident stem or progenitor cell population, which has the potential to contribute bona fide terminally differentiated cardiomyocytes after myocardial infarction. We reveal a novel genetic label of the activated adult progenitors via re-expression of a key embryonic epicardial gene, Wilm’s tumour 1 (Wt1), through priming by thymosin β4, a peptide previously shown to restore vascular potential to adult epicardium-derived progenitor cells with injury. Cumulative evidence indicates an epicardial origin of the progenitor population, and embryonic reprogramming results in the mobilization of this population and concomitant differentiation to give rise to de novo cardiomyocytes. Cell transplantation confirmed a progenitor source and chromosome painting of labelled donor cells revealed transdifferentiation to a myocyte fate in the absence of cell fusion. Derived cardiomyocytes are shown here to structurally and functionally integrate with resident muscle; as such, stimulation of this adult progenitor pool represents a significant step towards resident-cell-based therapy in human ischaemic heart disease.


Journal of Clinical Investigation | 2011

Adult mouse epicardium modulates myocardial injury by secreting paracrine factors

Bin Zhou; Leah B. Honor; Huamei He; Qing Ma; Jin-Hee Oh; Catherine Butterfield; Ruei-Zeng Lin; Juan M. Melero-Martin; Elena Dolmatova; Heather S. Duffy; Alexander von Gise; Pingzhu Zhou; Yong Wu Hu; Gang Wang; Bing Zhang; Lianchun Wang; Jennifer L. Hall; Marsha A. Moses; Francis X. McGowan; William T. Pu

The epicardium makes essential cellular and paracrine contributions to the growth of the fetal myocardium and the formation of the coronary vasculature. However, whether the epicardium has similar roles postnatally in the normal and injured heart remains enigmatic. Here, we have investigated this question using genetic fate-mapping approaches in mice. In uninjured postnatal heart, epicardial cells were quiescent. Myocardial infarction increased epicardial cell proliferation and stimulated formation of epicardium-derived cells (EPDCs), which remained in a thickened layer on the surface of the heart. EPDCs did not adopt cardiomyocyte or coronary EC fates, but rather differentiated into mesenchymal cells expressing fibroblast and smooth muscle cell markers. In vitro and in vivo assays demonstrated that EPDCs secreted paracrine factors that strongly promoted angiogenesis. In a myocardial infarction model, EPDC-conditioned medium reduced infarct size and improved heart function. Our findings indicate that epicardium modulates the cardiac injury response by conditioning the subepicardial environment, potentially offering a new therapeutic strategy for cardiac protection.


Molecular and Cellular Biology | 2009

MicroRNA-1 Negatively Regulates Expression of the Hypertrophy-Associated Calmodulin and Mef2a Genes

Sadakatsu Ikeda; Aibin He; Sek Won Kong; Jun Lu; Rafael Bejar; Natalya Bodyak; Kyu-Ho Lee; Qing Ma; Peter M. Kang; Todd R. Golub; William T. Pu

ABSTRACT Calcium signaling is a central regulator of cardiomyocyte growth and function. Calmodulin is a critical mediator of calcium signals. Because the amount of calmodulin within cardiomyocytes is limiting, the precise control of calmodulin expression is important for the regulation of calcium signaling. In this study, we show for the first time that calmodulin levels are regulated posttranscriptionally in heart failure. The cardiomyocyte-restricted microRNA miR-1 inhibited the translation of calmodulin-encoding mRNAs via highly conserved target sites within their 3′ untranslated regions. In keeping with its effect on calmodulin expression, miR-1 downregulated calcium-calmodulin signaling through calcineurin to NFAT. miR-1 also negatively regulated the expression of Mef2a and Gata4, key transcription factors that mediate calcium-dependent changes in gene expression. Consistent with the downregulation of these hypertrophy-associated genes, miR-1 attenuated cardiomyocyte hypertrophy in cultured neonatal rat cardiomyocytes and in the intact adult heart. Our data indicate that miR-1 regulates cardiomyocyte growth responses by negatively regulating the calcium signaling components calmodulin, Mef2a, and Gata4.


Cell Stem Cell | 2011

Adult Cardiac-Resident MSC-like Stem Cells with a Proepicardial Origin

James J.H. Chong; Vashe Chandrakanthan; Munira Xaymardan; Naisana S. Asli; Joan Li; Ishtiaq Ahmed; Corey Heffernan; Mary K. Menon; Christopher J. Scarlett; Amirsalar Rashidianfar; Christine Biben; Hans Zoellner; Emily K. Colvin; John E. Pimanda; Andrew V. Biankin; Bin Zhou; William T. Pu; Owen W.J. Prall; Richard P. Harvey

Colony-forming units - fibroblast (CFU-Fs), analogous to those giving rise to bone marrow (BM) mesenchymal stem cells (MSCs), are present in many organs, although the relationship between BM and organ-specific CFU-Fs in homeostasis and tissue repair is unknown. Here we describe a population of adult cardiac-resident CFU-Fs (cCFU-Fs) that occupy a perivascular, adventitial niche and show broad trans-germ layer potency in vitro and in vivo. CRE lineage tracing and embryo analysis demonstrated a proepicardial origin for cCFU-Fs. Furthermore, in BM transplantation chimeras, we found no interchange between BM and cCFU-Fs after aging, myocardial infarction, or BM stem cell mobilization. BM and cardiac and aortic CFU-Fs had distinct CRE lineage signatures, indicating that they arise from different progenitor beds during development. These diverse origins for CFU-Fs suggest an underlying basis for differentiation biases seen in different CFU-F populations, and could also influence their capacity for participating in tissue repair.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart

Aibin He; Sek Won Kong; Qing Ma; William T. Pu

Identification of genomic regions that control tissue-specific gene expression is currently problematic. ChIP and high-throughput sequencing (ChIP-seq) of enhancer-associated proteins such as p300 identifies some but not all enhancers active in a tissue. Here we show that co-occupancy of a chromatin region by multiple transcription factors (TFs) identifies a distinct set of enhancers. GATA-binding protein 4 (GATA4), NK2 transcription factor-related, locus 5 (NKX2-5), T-box 5 (TBX5), serum response factor (SRF), and myocyte-enhancer factor 2A (MEF2A), here referred to as “cardiac TFs,” have been hypothesized to collaborate to direct cardiac gene expression. Using a modified ChIP-seq procedure, we defined chromatin occupancy by these TFs and p300 genome wide and provided unbiased support for this hypothesis. We used this principle to show that co-occupancy of a chromatin region by multiple TFs can be used to identify cardiac enhancers. Of 13 such regions tested in transient transgenic embryos, seven (54%) drove cardiac gene expression. Among these regions were three cardiac-specific enhancers of Gata4, Srf, and swItch/sucrose nonfermentable-related, matrix-associated, actin-dependent regulator of chromatin, subfamily d, member 3 (Smarcd3), an epigenetic regulator of cardiac gene expression. Multiple cardiac TFs and p300-bound regions were associated with cardiac-enriched genes and with functional annotations related to heart development. Importantly, the large majority (1,375/1,715) of loci bound by multiple cardiac TFs did not overlap loci bound by p300. Our data identify thousands of prospective cardiac regulatory sequences and indicate that multiple TF co-occupancy of a genomic region identifies developmentally relevant enhancers that are largely distinct from p300-associated enhancers.


Nature Biotechnology | 2013

Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction

Lior Zangi; Kathy O. Lui; Alexander von Gise; Qing Ma; Wataru Ebina; Leon M. Ptaszek; Daniela Später; Huansheng Xu; Mohammadsharif Tabebordbar; Rostic Gorbatov; Brena Sena; Matthias Nahrendorf; David M. Briscoe; Ronald A. Li; Amy J. Wagers; Derrick J. Rossi; William T. Pu; Kenneth R. Chien

In a cell-free approach to regenerative therapeutics, transient application of paracrine factors in vivo could be used to alter the behavior and fate of progenitor cells to achieve sustained clinical benefits. Here we show that intramyocardial injection of synthetic modified RNA (modRNA) encoding human vascular endothelial growth factor-A (VEGF-A) results in the expansion and directed differentiation of endogenous heart progenitors in a mouse myocardial infarction model. VEGF-A modRNA markedly improved heart function and enhanced long-term survival of recipients. This improvement was in part due to mobilization of epicardial progenitor cells and redirection of their differentiation toward cardiovascular cell types. Direct in vivo comparison with DNA vectors and temporal control with VEGF inhibitors revealed the greatly increased efficacy of pulse-like delivery of VEGF-A. Our results suggest that modRNA is a versatile approach for expressing paracrine factors as cell fate switches to control progenitor cell fate and thereby enhance long-term organ repair.


Journal of the American College of Cardiology | 2001

Evaluation of the role of IKAChin atrial fibrillation using a mouse knockout model

Pramesh Kovoor; Kevin Wickman; Colin T. Maguire; William T. Pu; Josef Gehrmann; Charles I. Berul; David E. Clapham

OBJECTIVES We sought to study the role of I(KACh) in atrial fibrillation (AF) and the potential electrophysiologic effects of a specific I(KACh) antagonist. BACKGROUND I(KACh) mediates much of the cardiac responses to vagal stimulation. Vagal stimulation predisposes to AF, but the specific role of I(KACh) in the generation of AF and the electrophysiologic effects of specific I(KACh) blockade have not been studied. METHODS Adult wild-type (WT) and I(KACh)-deficient knockout (KO) mice were studied in the absence and presence of the muscarinic receptor agonist carbachol. The electrophysiologic features of KO mice were compared with those of WT mice to assess the potential effects of a specific I(KACh) antagonist. RESULTS Atrial fibrillation lasting for a mean of 5.7+/-11 min was initiated in 10 of 14 WT mice in the presence of carbachol, but not in the absence of carbachol. Atrial arrhythmia could not be induced in KO mice. Ventricular tachyarrhythmia could not be induced in either type of mouse. Sinus node recovery times after carbachol and sinus cycle lengths were shorter and ventricular effective refractory periods were greater in KO mice than in WT mice. There was no significant difference between KO and WT mice in AV node function. CONCLUSIONS Activation of I(KACh) predisposed to AF and lack of I(KACh) prevented AF. It is likely that I(KACh) plays a crucial role in the generation of AF in mice. Specific I(KACh) blockers might be useful for the treatment of AF without significant adverse effects on the atrioventricular node or the ventricles.


Proceedings of the National Academy of Sciences of the United States of America | 2012

YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy

Alexander von Gise; Zhiqiang Lin; Karin Schlegelmilch; Leah B. Honor; Gina M. Pan; Jessica N. Buck; Qing Ma; Takahiro Ishiwata; Bin Zhou; Fernando D. Camargo; William T. Pu

Heart growth is tightly controlled so that the heart reaches a predetermined size. Fetal heart growth occurs through cardiomyocyte proliferation, whereas postnatal heart growth involves primarily physiological cardiomyocyte hypertrophy. The Hippo kinase cascade is an important regulator of organ growth. A major target of this kinase cascade is YAP1, a transcriptional coactivator that is inactivated by Hippo kinase activity. Here, we used both genetic gain and loss of Yap1 function to investigate its role in regulating proliferative and physiologic hypertrophic heart growth. Fetal Yap1 inactivation caused marked, lethal myocardial hypoplasia and decreased cardiomyocyte proliferation, whereas fetal activation of YAP1 stimulated cardiomyocyte proliferation. Enhanced proliferation was particularly dramatic in trabecular cardiomyocytes that normally exit from the cell cycle. Remarkably, YAP1 activation was sufficient to stimulate proliferation of postnatal cardiomyocytes, both in culture and in the intact heart. A dominant negative peptide that blocked YAP1 binding to TEAD transcription factors inhibited YAP1 proliferative activity, indicating that this activity requires YAP1–TEAD interaction. Although Yap1 was a critical regulator of cardiomyocyte proliferation, it did not influence physiological hypertrophic growth of cardiomyocytes, because postnatal Yap1 gain or loss of function did not significantly alter cardiomyocyte size. These studies demonstrate that Yap1 is a crucial regulator of cardiomyocyte proliferation, cardiac morphogenesis, and myocardial trabeculation. Activation of Yap1 in postnatal cardiomyocytes may be a useful strategy to stimulate cardiomyocyte expansion in therapeutic myocardial regeneration.

Collaboration


Dive into the William T. Pu's collaboration.

Top Co-Authors

Avatar

Bin Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qing Ma

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Pingzhu Zhou

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Zhiqiang Lin

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Da-Zhi Wang

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Sek Won Kong

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge