William Tiznado
Andrés Bello National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William Tiznado.
Journal of the American Chemical Society | 2009
William Tiznado; Nancy Perez-Peralta; Rafael Islas; Alejandro Toro-Labbé; Jesus M. Ugalde; Gabriel Merino
We have explored in detail the potential energy surfaces of the Si(5)Li(n)(5-6) (n = 5-7) systems. We found that it is feasible to design three-dimensional star-like silicon structures using the appropriate ligands. The global minimum structure for Si(5)Li(7)(+) has a perfect seven-peak star-like structure. The title compounds comprise, essentially, the Si(5)(6-) ring interacting with lithium cations. The ionic character of the Si-Li interactions induces the formation of a bridged structure. Concomitantly, our calculations show that the reduction of the Pauli repulsion and the maximization of the orbital contribution are also significant for the star-like structure formation. Additionally, the MO analysis of the systems suggests that the role of the lithium atoms is to provide the precise number of electrons to the central Si(5) unit. This is confirmed by the magnetic properties, which show that electron delocalization enhances the stability of the star-like structures proposed here.
Journal of Chemical Theory and Computation | 2010
Patricio Fuentealba; Elizabeth Florez; William Tiznado
In this work an alternative to the analysis of the Fukui function will be presented and compared with the traditional condensed function. The topological analysis allows us to define basins corresponding to different regions of the space, and the numerical integration of the density over those volumes gives a number amenable of a chemical interpretation in line with the Fukui function applications. Various examples are shown, a series of small molecules, a couple of clusters, and aromatic molecules. They are discussed in comparison with other methodologies and with the experimental evidence.
Inorganic Chemistry | 2014
Juan J. Torres-Vega; Alejandro Vásquez-Espinal; Julio Caballero; María Luisa Valenzuela; Luis Alvarez-Thon; Edison Osorio; William Tiznado
Although aromaticity is a concept in chemistry, in the last years, special efforts have been carried out in order to propose theoretical strategies to quantify it as a property of molecular rings. Among them, perhaps the computation of nucleus independent chemical shifts (NICSs) is the most commonly used, since it is possible to calculate it in an easy and fast way with most used quantum chemistry software. However, contradicting assignments of aromaticity by NICS and other methods have been reported in the literature, especially in studies concerning inorganic chemistry. In this Article is proposed a new and simple strategy to use the NICS information to assess aromaticity, identifying the point along the axis perpendicular to the molecular plane where the in-plane component of NICS becomes zero; it is called free of in-plane component NICS (FiPC-NICS). This spatial point is proposed as secure to consider NICS as an aromaticity descriptor; this simple proposal is evaluated in borazine and cyclotriphosphazenes. The results are compared with carefully examined aromatic stabilization energies and magnetically induced current-density analysis.
Journal of Physical Chemistry A | 2011
Carlos Cárdenas; William Tiznado; Paul W. Ayers; Patricio Fuentealba
In the course of a reaction it is the shape of the Fukui potential that guides a distant reagent toward the site where an electrophile/nucleophile is willing to accept/donate charge. In this paper we explore the mathematical characteristics of the Fukui potential and demonstrate its relationship to the hardness and the ability of an atom in a molecule to change its charge. The Fukui potential not only determines the active site for electron transfer, but it also approximates the distribution of hardness of a molecule: it is the Coulomb contribution to the frontier local hardness. The Fukui potential at the position of the nuclei is equal to the variation of the chemical potential with the nuclear charge and therefore measures the sensitivity of the system to changes in atom type. In the specific case of atoms and slightly charged ions, the Fukui potential at the nucleus measures the hardness. The strong correlation between the hardness and the Fukui potential at the nucleus suggests that the Fukui potential at the nucleus is an alternative definition for the chemical hardness.
Journal of Chemical Theory and Computation | 2010
Abril C. Castro; Edison Osorio; J. Oscar C. Jiménez-Halla; Eduard Matito; William Tiznado; Gabriel Merino
Can relativistic effects modify the NICS and the B(ind) values? In this manuscript we evaluate the relativistic corrections incorporated via the zeroth-order regular approximation to the calculations of nucleus-independent chemical shifts and the induced magnetic field (B(ind)) in the E12(2-) spherenes (E = Ge, Sn, Pb). We found that both electron delocalization descriptors are strongly affected by the relativistic corrections. For instance, for plumbaspherene, the difference in values from the nonrelativistic to the relativity-included calculation is almost 40 ppm! Our results show that the changes observed in the NICS and B(ind) values in the title cages are a consequence of the treatment of the relativistic effects. If these effects are included as scalar or spin-orbit calculations, then we can establish the next trend: Ge12(2-) is a nonaromatic species, Sn12(2-) is a low aromatic species, and Pb12(2-) is strongly aromatic, according to calculated NICS and B(ind) values. Thus, any prediction of electron delocalization in molecules containing heavy elements without considering an adequate treatment for relativistic effects may lead to an erroneous chemical interpretation.
Journal of Organic Chemistry | 2011
Majid El-Hamdi; William Tiznado; Jordi Poater; Miquel Solà
The isomerization energies of 1,2- and 1,3-diazacyclobutadiene, pyrazole and imidazole, and pyridazine and pyrimidine are 10.6, 9.4, and 20.9 kcal/mol, respectively, at the BP86/TZ2P level of theory. These energies are analyzed using a Morokuma-like energy decomposition analysis in conjunction with what we have called turn-upside-down approach. Our results indicate that, in the three cases, the higher stability of the 1,3-isomers is not due to lower Pauli repulsions but because of the more favorable σ-orbital interactions involved in the formation of two C-N bonds in comparison with the generation of C-C and N-N bonds in the 1,2-isomers.
Journal of Physical Chemistry A | 2013
Juan José Torres; Rafael Islas; Edison Osorio; Jason G. Harrison; William Tiznado; Gabriel Merino
In this article, we employed the induced magnetic field method to show that the Al2X6 (X = F, Cl, Br, I) clusters cannot be classified as aromatic systems. Interestingly, even nucleus independent chemical shift (NICS) reveals the same conclusion when analyzed in greater detail, showing that a superficial analysis of this index can easily lead to incorrect interpretations. In view of the fact that the NICS index is extensively used by computational and theoretically oriented experimental chemists, this is an important warning against superficial analyses, as it can lead to erroneous chemical interpretation.
Chemistry: A European Journal | 2012
Edison Osorio; Jared K. Olson; William Tiznado; Alexander I. Boldyrev
We performed global minimum searches for the B(n) H(n+2) (n=2-5) series and found that classical structures composed of 2c-2e B-H and B-B bonds become progressively less stable along the series. Relative energies increase from 2.9 kcal mol(-1) in B(2) H(4) to 62.3 kcal mol(-1) in B(5) H(7). We believe this occurs because boron atoms in the studied molecules are trying to avoid sp(2) hybridization and trigonal structure at the boron atoms, as in that case one 2p-AO is empty, which is highly unfavorable. This affinity of boron to have some electron density on all 2p-AOs and avoiding having one 2p-AO empty is a main reason why classical structures are not the most stable configurations and why multicenter bonding is so important for the studied boron-hydride clusters as well as for pure boron clusters and boron compounds in general.
Physical Chemistry Chemical Physics | 2011
Nancy Perez-Peralta; Maryel Contreras; William Tiznado; John M. Stewart; Kelling J. Donald; Gabriel Merino
We have explored in silico the potential energy surfaces of the C(5)Li(n)(n-6) (n = 5, 6, and 7) clusters using the Gradient Embedded Genetic Algorithm (GEGA) and other computational strategies. The most stable forms of C(5)Li(5)(-) and C(5)Li(6) are two carbon chains linked by two lithium atoms in a persistent seven membered ring capped by two Li atoms. The other Li atoms are arrayed on the edge of the seven membered ring. In contrast, the global minimum structure for C(5)Li(7)(+) is a bicapped star of D(5h) symmetry. The molecular orbital analysis and computed magnetic field data suggest that electron delocalization, as well as the saturation of the apical positions of the five-membered carbon ring with lithium atoms in C(5)Li(7)(+) plays a key role in the stabilization of the carbon-lithium star. In fact, the planar star sub-structure for the carbon ring are unstable without the apical caps. This is also what has been found for the Si analogues. The split of the B(ind)(z) in its σ- and π-contribution indicates that C(5)Li(7)(+) is a π-aromatic and σ-nonaromatic system.
Chemistry: A European Journal | 2013
Maryel Contreras; Edison Osorio; Franklin Ferraro; Gustavo Puga; Kelling J. Donald; Jason G. Harrison; Gabriel Merino; William Tiznado
The most stable forms of E(5)Li(7)(+) (E = Ge, Sn, and Pb) have been explored by means of a stochastic search of their potential-energy surfaces by using the gradient embedded genetic algorithm (GEGA). The preferred isomer of the Ge(5)Li(7)(+) ion is a slightly distorted analogue of the D(5h) three-dimensional seven-pointed starlike structure adopted by the lighter C(5)Li(7)(+) and Si(5)Li(7)(+) clusters. In contrast, the preferred structures for Sn(5)Li(7)(+) and Pb(5)Li(7)(+) are quite different. By starting from the starlike arrangement, corresponding lowest-energy structures are generated by migration of one of the E atoms out of the plane with the a corresponding rearrangement of the Li atoms. To understand these structural preferences, we propose a new energy decomposition analysis based on isomerizations (isomerization energy decomposition analysis (IEDA)), which enable us to extract energetic information from isomerization between structures, mainly from highly charged fragments.