William Underwood
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by William Underwood.
Cell | 2006
Maeli Melotto; William Underwood; Jessica M. Koczan; Kinya Nomura; Sheng Yang He
Microbial entry into host tissue is a critical first step in causing infection in animals and plants. In plants, it has been assumed that microscopic surface openings, such as stomata, serve as passive ports of bacterial entry during infection. Surprisingly, we found that stomatal closure is part of a plant innate immune response to restrict bacterial invasion. Stomatal guard cells of Arabidopsis perceive bacterial surface molecules, which requires the FLS2 receptor, production of nitric oxide, and the guard-cell-specific OST1 kinase. To circumvent this innate immune response, plant pathogenic bacteria have evolved specific virulence factors to effectively cause stomatal reopening as an important pathogenesis strategy. We provide evidence that supports a model in which stomata, as part of an integral innate immune system, act as a barrier against bacterial infection.
Nature | 2010
Li Qing Chen; Bi Huei Hou; Sylvie Lalonde; Hitomi Takanaga; Mara L. Hartung; Xiao Qing Qu; Woei Jiun Guo; Jung Gun Kim; William Underwood; Bhavna Chaudhuri; Diane Chermak; Ginny Antony; Frank F. White; Shauna Somerville; Mary Beth Mudgett; Wolf B. Frommer
Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.
Annual Review of Phytopathology | 2008
Maeli Melotto; William Underwood; Sheng Yang He
Pathogen entry into host tissue is a critical first step in causing infection. For foliar bacterial plant pathogens, natural surface openings, such as stomata, are important entry sites. Historically, these surface openings have been considered as passive portals of entry for plant pathogenic bacteria. However, recent studies have shown that stomata can play an active role in limiting bacterial invasion as part of the plant innate immune system. As a counter-defense, the plant pathogen Pseudomonas syringae pv. tomato DC3000 uses the virulence factor coronatine to actively open stomata. In nature, many foliar bacterial disease outbreaks require high humidity, rain, or storms, which could favor stomatal opening and/or bypass stomatal defense by creating wounds as alternative entry sites. Further studies on microbial and environmental regulation of stomatal closure and opening could fill gaps in our understanding of bacterial pathogenesis, disease epidemiology, and microbiology of the phyllosphere.
The Plant Cell | 2009
Gerold J. M. Beckers; Michal Rafal Jaskiewicz; Yidong Liu; William Underwood; Sheng Yang He; Shuqun Zhang; Uwe Conrath
In plants and animals, induced resistance (IR) to biotic and abiotic stress is associated with priming of cells for faster and stronger activation of defense responses. It has been hypothesized that cell priming involves accumulation of latent signaling components that are not used until challenge exposure to stress. However, the identity of such signaling components has remained elusive. Here, we show that during development of chemically induced resistance in Arabidopsis thaliana, priming is associated with accumulation of mRNA and inactive proteins of mitogen-activated protein kinases (MPKs), MPK3 and MPK6. Upon challenge exposure to biotic or abiotic stress, these two enzymes were more strongly activated in primed plants than in nonprimed plants. This elevated activation was linked to enhanced defense gene expression and development of IR. Strong elicitation of stress-induced MPK3 and MPK6 activity is also seen in the constitutive priming mutant edr1, while activity was attenuated in the priming-deficient npr1 mutant. Moreover, priming of defense gene expression and IR were lost or reduced in mpk3 or mpk6 mutants. Our findings argue that prestress deposition of the signaling components MPK3 and MPK6 is a critical step in priming plants for full induction of defense responses during IR.
Frontiers in Plant Science | 2012
William Underwood
Prospective plant pathogens must overcome the physical barrier presented by the plant cell wall. In addition to being a preformed, passive barrier limiting access of pathogens to plant cells, the cell wall is actively remodeled and reinforced specifically at discrete sites of interaction with potentially pathogenic microbes. Active reinforcement of the cell wall through the deposition of cell wall appositions, referred to as papillae, is an early response to perception of numerous categories of pathogens including fungi and bacteria. Rapid deposition of papillae is generally correlated with resistance to fungal pathogens that attempt to penetrate plant cell walls for the establishment of feeding structures. Despite the ubiquity and apparent importance of this early defense response, relatively little is known about the underlying molecular mechanisms and cellular processes involved in the targeting and assembly of papillae. This review summarizes recent advances in our understanding of cell wall-associated defenses induced by pathogen perception as well as the impact of changes in cell wall polymers on interactions with pathogens and highlights significant unanswered questions driving future research in the area.
Cellular Microbiology | 2007
William Underwood; Maeli Melotto; Sheng Yang He
Stomata are microscopic pores in the epidermis of the aerial parts of terrestrial plants. These pores are essential for photosynthesis, as they allow CO2 to diffuse into the plant. The size of the stomatal pore changes in response to environmental conditions, such as light intensity, air humidity and CO2 concentrations, as part of the plants adaptation to maximize photosynthetic efficiency and, at the same time, to minimize water loss. Historically, stomata have been considered as passive portal of entry for plant pathogenic bacteria. However, recent studies suggest that stomata can play an active role in restricting bacterial invasion as part of the plant innate immune system. Some plant pathogens have evolved specific virulence factors to overcome stomata‐based defence. Interestingly, many bacterial disease outbreaks require high humidity, rain, or frost damage, which could promote stomatal opening and/or bypass stomatal defence by creating wounds as alternative entry sites. Further studies on microbial and environmental regulation of stomata‐based defence should fill gaps in our understanding of bacterial pathogenesis, disease epidemiology and phyllosphere microbiology.
Proceedings of the National Academy of Sciences of the United States of America | 2013
William Underwood; Shauna C. Somerville
The Arabidopsis PENETRATION RESISTANCE 3 (PEN3) ATP binding cassette transporter participates in nonhost resistance to fungal and oomycete pathogens and is required for full penetration resistance to the barley powdery mildew Blumeria graminis f. sp. hordei. PEN3 resides in the plasma membrane and is recruited to sites of attempted penetration by invading fungal appressoria, where the transporter shows strong focal accumulation. We report that recruitment of PEN3 to sites of pathogen detection is triggered by perception of pathogen-associated molecular patterns, such as flagellin and chitin. PEN3 recruitment requires the corresponding pattern recognition receptors but does not require the BAK1 coreceptor. Pathogen- and pathogen-associated molecular pattern-induced focal accumulation of PEN3 and the PENETRATION RESISTANCE 1 (PEN1) syntaxin show differential sensitivity to specific pharmacological inhibitors, indicating distinct mechanisms for recruitment of these defense-associated proteins to the host–pathogen interface. Focal accumulation of PEN3 requires actin but is not affected by inhibitors of microtubule polymerization, secretory trafficking, or protein synthesis, and plasmolysis experiments indicate that accumulation of PEN3 occurs outside of the plasma membrane within papillae. Our results implicate pattern recognition receptors in the recruitment of defense-related proteins to sites of pathogen detection. Additionally, the process through which PEN3 is recruited to the host–pathogen interface is independent of new protein synthesis and BFA-sensitive secretory trafficking events, suggesting that existing PEN3 is redirected through an unknown trafficking pathway to sites of pathogen detection for export into papillae.
Journal of Experimental Botany | 2008
William Underwood; Shauna C. Somerville
Plants resist attack by haustorium-forming biotrophic and hemi-biotrophic fungi through fortification of the cell wall to prevent penetration through the wall and the subsequent establishment of haustorial feeding structures by the fungus. While the existence of cell wall-based defences has been known for many years, only recently have the molecular components contributing to such defences been identified. Forward genetic screens identified Arabidopsis mutants impaired in penetration resistance to powdery mildew fungi that were normally halted at the cell wall. Several loci contributing to penetration resistance have been identified and a common feature is the striking focal accumulation of proteins associated with penetration resistance at sites of interaction with fungal appressoria and penetration pegs. The focal accumulation of defence-related proteins and the deposition of cell wall reinforcements at sites of attempted fungal penetration represent an example of cell polarization and raise many questions of relevance, not only to plant pathology but also to general cell biology.
Molecular Plant | 2017
William Underwood; Andrew Ryan; Shauna C. Somerville
Deposition of cell wall-reinforcing papillae is an integral component of the plant immune response. The Arabidopsis PENETRATION 3 (PEN3) ATP binding cassette (ABC) transporter plays a role in defense against numerous pathogens and is recruited to sites of pathogen detection where it accumulates within papillae. However, the trafficking pathways and regulatory mechanisms contributing to recruitment of PEN3 and other defenses to the host-pathogen interface are poorly understood. Here, we report a confocal microscopy-based screen to identify mutants with altered localization of PEN3-GFP after inoculation with powdery mildew fungi. We identified a mutant, aberrant localization of PEN3 3 (alp3), displaying accumulation of the normally plasma membrane (PM)-localized PEN3-GFP in endomembrane compartments. The mutant was found to be disrupted in the P4-ATPase AMINOPHOSPHOLIPID ATPASE 3 (ALA3), a lipid flippase that plays a critical role in vesicle formation. We provide evidence that PEN3 undergoes continuous endocytic cycling from the PM to the trans-Golgi network (TGN). In alp3, PEN3 accumulates in the TGN, causing delays in recruitment to the host-pathogen interface. Our results indicate that PEN3 and other defense proteins continuously cycle through the TGN and that timely exit of these proteins from the TGN is critical for effective pre-invasive immune responses against powdery mildews.
Plant Signaling & Behavior | 2017
William Underwood; Shauna C. Somerville
ABSTRACT The Arabidopsis PEN3 ABC transporter accumulates at sites of pathogen detection, where it is involved in defense against a number of pathogens. Perception of PAMPs by pattern recognition receptors initiates recruitment of PEN3 and also leads to PEN3 phosphorylation at multiple amino acid residues. Whether PAMP-induced phosphorylation of PEN3 is important for its defense function or focal recruitment has not been addressed. In this study, we evaluated the role of PEN3 phosphorylation in modulating the localization and defense function of the transporter. We report that PEN3 phosphorylation is critical for its function in defense, but dispensable for recruitment to powdery mildew penetration sites. These results indicate that PAMP-induced phosphorylation is likely to regulate the transport activity of PEN3.