Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William W. Nazaroff is active.

Publication


Featured researches published by William W. Nazaroff.


Journal of Aerosol Science | 2000

MODELING INDOOR PARTICLE DEPOSITION FROM TURBULENT FLOW ONTO SMOOTH SURFACES

Alvin C.K. Lai; William W. Nazaroff

Abstract Particle deposition to indoor surfaces is frequently modeled by assuming that indoor air flow is homogeneously and isotropically turbulent. Existing formulations of such models, based on the seminal work of Corner and Pendlebury (1951, Proc. Phys. Soc. Lond. B 64, 645), lack a thorough physical foundation. We apply the results of recent studies of near-surface turbulence to produce an analogous model for particle deposition onto indoor surfaces that remains practical to use yet has a stronger physical basis. The model accounts for the effects of Brownian and turbulent diffusion and gravitational settling. It predicts deposition to smooth surfaces as a function of particle size and density. The only required input parameters are enclosure geometry and friction velocity. Model equations are presented for enclosures with vertical and horizontal surfaces, and for spherical cavities. The model helps account for a previously unexplained experimental observation regarding the functional dependence of deposition velocity on particle size. Model predictions agree well with recently published experimental data for a spherical cavity (Cheng, Y. S., Aerosol Sci. Technol. 27, 131–146, (1997)).


Reviews of Geophysics | 1992

Radon transport from soil to air

William W. Nazaroff

Radon generated within the upper few meters of the Earths crust by the radioactive decay of radium can migrate during its brief lifetime from soil into the atmosphere. This phenomenon leads to a human health concern as inhalation of the short-lived decay products of radon causes irradiation of cells lining the respiratory tract. This paper reviews the factors that control the rate at which two radon isotopes, 222Rn and 220Rn, enter outdoor and indoor air from soil. The radium content of surface soils in the United States is usually in the range 10–100 Bq kg−1. The emanation coefficient, which refers to the fraction of radon generated in a material that enters the pore fluids, varies over a wide range with a typical value being 0.2. Radon in soil pores may be partitioned among three states: in the pore air, dissolved in the pore water, and sorbed to the soil grains. Except in the immediate vicinity of buildings, radon migrates through soil pores principally by molecular diffusion. Average reported flux densities from undisturbed soil into the atmosphere are 0.015–0.048 Bq m−2 s−1 for 222Rn and 1.6–1.7 Bq m−2 s−1 for 220Rn. Soil is the dominant source of radon in most buildings. Advective flow of soil gas across substructure penetrations is a key element in the transport process. The advective flow is driven by the weather (wind and indoor-outdoor temperature differences) and by the operation of building systems, such as heating and air conditioning equipment. A typical radon entry rate into a single-family dwelling of 10–15 kBq h−1 can be accounted for by weather-induced pressure-driven flow through moderately to highly permeable soils. The extent to which diffusion through soil pores contributes to radon entry into buildings is not known, but in buildings with elevated concentrations, diffusion is believed to be less important than advection.


Journal of Occupational and Environmental Hygiene | 2005

Toward Understanding the Risk of Secondary Airborne Infection: Emission of Respirable Pathogens

Mark Nicas; William W. Nazaroff; Alan Hubbard

Certain respiratory tract infections are transmitted through air. Coughing and sneezing by an infected person can emit pathogen-containing particles with diameters less than 10 μ m that can reach the alveolar region. Based on our analysis of the sparse literature on respiratory aerosols, we estimated that emitted particles quickly decrease in diameter due to water loss to one-half the initial values, and that in one cough the volume in particles with initial diameters less than 20 μ m is 6 × 10− 8 mL. The pathogen emission rate from a source case depends on the frequency of expiratory events, the respirable particle volume, and the pathogen concentration in respiratory fluid. Viable airborne pathogens are removed by exhaust ventilation, particle settling, die-off, and air disinfection methods; each removal mechanism can be assigned a first-order rate constant. The pathogen concentration in well-mixed room air depends on the emission rate, the size distribution of respirable particles carrying pathogens, and the removal rate constants. The particle settling rate and the alveolar deposition fraction depend on particle size. Given these inputs plus a susceptible persons breathing rate and exposure duration to room air, an expected alveolar dose μ is estimated. If the infectious dose is one organism, as appears to be true for tuberculosis, infection risk is estimated by the expression: R = 1 − exp(−μ). Using published tuberculosis data concerning cough frequency, bacilli concentration in respiratory fluid, and die-off rate, we illustrate the model via a plausible scenario for a person visiting the room of a pulmonary tuberculosis case. We suggest that patients termed “superspreaders” or “dangerous disseminators” are those infrequently encountered persons with high values of cough and/or sneeze frequency, elevated pathogen concentration in respiratory fluid, and/or increased respirable aerosol volume per expiratory event such that their pathogen emission rate is much higher than average.


Indoor Air | 2011

Ventilation rates and health: multidisciplinary review of the scientific literature

Jan Sundell; H. Levin; William W. Nazaroff; William S. Cain; William J. Fisk; D.T. Grimsrud; Finn Gyntelberg; Yingrui Li; Andrew K. Persily; A. C. Pickering; Jonathan M. Samet; John D. Spengler; S. T. Taylor; Charles J. Weschler

UNLABELLED The scientific literature through 2005 on the effects of ventilation rates on health in indoor environments has been reviewed by a multidisciplinary group. The group judged 27 papers published in peer-reviewed scientific journals as providing sufficient information on both ventilation rates and health effects to inform the relationship. Consistency was found across multiple investigations and different epidemiologic designs for different populations. Multiple health endpoints show similar relationships with ventilation rate. There is biological plausibility for an association of health outcomes with ventilation rates, although the literature does not provide clear evidence on particular agent(s) for the effects. Higher ventilation rates in offices, up to about 25 l/s per person, are associated with reduced prevalence of sick building syndrome (SBS) symptoms. The limited available data suggest that inflammation, respiratory infections, asthma symptoms and short-term sick leave increase with lower ventilation rates. Home ventilation rates above 0.5 air changes per hour (h(-1)) have been associated with a reduced risk of allergic manifestations among children in a Nordic climate. The need remains for more studies of the relationship between ventilation rates and health, especially in diverse climates, in locations with polluted outdoor air and in buildings other than offices. PRACTICAL IMPLICATIONS Ventilation with outdoor air plays an important role influencing human exposures to indoor pollutants. This review and assessment indicates that increasing ventilation rates above currently adopted standards and guidelines should result in reduced prevalence of negative health outcomes. Building operators and designers should avoid low ventilation rates unless alternative effective measures, such as source control or air cleaning, are employed to limit indoor pollutant levels.


PLOS ONE | 2012

Human Occupancy as a Source of Indoor Airborne Bacteria

Denina Hospodsky; Jing Qian; William W. Nazaroff; Naomichi Yamamoto; Kyle Bibby; Hamid Rismani-Yazdi; Jordan Peccia

Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study presents evidence for elevated concentrations of indoor airborne bacteria due to human occupancy, and investigates the sources of these bacteria. Samples were collected in a university classroom while occupied and when vacant. The total particle mass concentration, bacterial genome concentration, and bacterial phylogenetic populations were characterized in indoor, outdoor, and ventilation duct supply air, as well as in the dust of ventilation system filters and in floor dust. Occupancy increased the total aerosol mass and bacterial genome concentration in indoor air PM10 and PM2.5 size fractions, with an increase of nearly two orders of magnitude in airborne bacterial genome concentration in PM10. On a per mass basis, floor dust was enriched in bacterial genomes compared to airborne particles. Quantitative comparisons between bacterial populations in indoor air and potential sources suggest that resuspended floor dust is an important contributor to bacterial aerosol populations during occupancy. Experiments that controlled for resuspension from the floor implies that direct human shedding may also significantly impact the concentration of indoor airborne particles. The high content of bacteria specific to the skin, nostrils, and hair of humans found in indoor air and in floor dust indicates that floors are an important reservoir of human-associated bacteria, and that the direct particle shedding of desquamated skin cells and their subsequent resuspension strongly influenced the airborne bacteria population structure in this human-occupied environment. Inhalation exposure to microbes shed by other current or previous human occupants may occur in communal indoor environments.


Environmental Science & Technology | 1986

Mathematical modeling of chemically reactive pollutants in indoor air

William W. Nazaroff; Glen R. Cass

A general mathematical model is presented for predicting the concentrations of chemically reactive compounds in indoor air. The model accounts for the effects of ventilation, filtration, heterogeneous removal, direct emission, and photolytic and thermal chemical reactions. The model is applied to the induction of photochemically reactive pollutants into a museum gallery, and the predicted NO, NO_x-NO, and O_3 concentrations are compared to measured data. The model predicts substantial production of several species due to chemical reaction, including HNO_2, HNO_3, NO_3, and N_2O_5. Circumstances in which homogeneous chemistry may assume particular importance are identified and include buildings with glass walls, indoor combustion sources, and direct emission of olefins.


Indoor Air | 2012

Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom

Jing Qian; Denina Hospodsky; Naomichi Yamamoto; William W. Nazaroff; Jordan Peccia

The role of human occupancy as a source of indoor biological aerosols is poorly understood. Size-resolved concentrations of total and biological particles in indoor air were quantified in a classroom under occupied and vacant conditions. Per-occupant emission rates were estimated through a mass-balance modeling approach, and the microbial diversity of indoor and outdoor air during occupancy was determined via rDNA gene sequence analysis. Significant increases of total particle mass and bacterial genome concentrations were observed during the occupied period compared to the vacant case. These increases varied in magnitude with the particle size and ranged from 3 to 68 times for total mass, 12–2700 times for bacterial genomes, and 1.5–5.2 times for fungal genomes. Emission rates per person-hour because of occupancy were 31 mg, 37 × 106 genome copies, and 7.3 × 106 genome copies for total particle mass, bacteria, and fungi, respectively. Of the bacterial emissions, ∼18% are from taxa that are closely associated with the human skin microbiome. This analysis provides size-resolved, per person-hour emission rates for these biological particles and illustrates the extent to which being in an occupied room results in exposure to bacteria that are associated with previous or current human occupants. Practical Implications Presented here are the first size-resolved, per person emission rate estimates of bacterial and fungal genomes for a common occupied indoor space. The marked differences observed between total particle and bacterial size distributions suggest that size-dependent aerosol models that use total particles as a surrogate for microbial particles incorrectly assess the fate of and human exposure to airborne bacteria. The strong signal of human microbiota in airborne particulate matter in an occupied setting demonstrates that the aerosol route can be a source of exposure to microorganisms emitted from the skin, hair, nostrils, and mouths of other occupants.


Indoor Air | 2012

SVOC exposure indoors: fresh look at dermal pathways

Charles J. Weschler; William W. Nazaroff

UNLABELLED This paper critically examines indoor exposure to semivolatile organic compounds (SVOCs) via dermal pathways. First, it demonstrates that--in central tendency--an SVOCs abundance on indoor surfaces and in handwipes can be predicted reasonably well from gas-phase concentrations, assuming that thermodynamic equilibrium prevails. Then, equations are developed, based upon idealized mass-transport considerations, to estimate transdermal penetration of an SVOC either from its concentration in skin-surface lipids or its concentration in air. Kinetic constraints limit air-to-skin transport in the case of SVOCs that strongly sorb to skin-surface lipids. Air-to-skin transdermal uptake is estimated to be comparable to or larger than inhalation intake for many SVOCs of current or potential interest indoors, including butylated hydroxytoluene, chlordane, chlorpyrifos, diethyl phthalate, Galaxolide, geranyl acetone, nicotine (in free-base form), PCB28, PCB52, Phantolide, Texanol and Tonalide. Although air-to-skin transdermal uptake is anticipated to be slow for bisphenol A, we find that transdermal permeation may nevertheless be substantial following its transfer to skin via contact with contaminated surfaces. The paper concludes with explorations of the influence of particles and dust on dermal exposure, the role of clothing and bedding as transport vectors, and the potential significance of hair follicles as transport shunts through the epidermis. PRACTICAL IMPLICATIONS Human exposure to indoor pollutants can occur through dietary and nondietary ingestion, inhalation, and dermal absorption. Many factors influence the relative importance of these pathways, including physical and chemical properties of the pollutants. This paper argues that exposure to indoor semivolatile organic compounds (SVOCs) through the dermal pathway has often been underestimated. Transdermal permeation of SVOCs can be substantially greater than is commonly assumed. Transport of SVOCs from the air to and through the skin is typically not taken into account in exposure assessments. Yet, for certain SVOCs, intake through skin is estimated to be substantially larger than intake through inhalation. Exposure scientists, risk assessors, and public health officials should be mindful of the dermal pathway when estimating exposures to indoor SVOCs. Also, they should recognize that health consequences vary with exposure pathway. For example, an SVOC that enters the blood through the skin does not encounter the same detoxifying enzymes that an ingested SVOC would experience in the stomach, intestines, and liver before it enters the blood.


Environmental Science & Technology | 2011

Grand Challenges for Life-Cycle Assessment of Biofuels

Thomas E. McKone; William W. Nazaroff; Peter Berck; Maximilian Auffhammer; T. Lipman; Margaret S. Torn; Eric Masanet; Agnes Lobscheid; Nicholas J Santero; U. Mishra; A. Barrett; M. Bomberg; Kevin Fingerman; Corinne D. Scown; Bret Strogen; Arpad Horvath

Biofuels are widely touted as viable, albeit not straightforward, alternatives to petroleum-derived fuels. To best determine their utilization, many practitioners turn to life-cycle assessment (LCA) to ascertain the “environmental footprint”. Although parameters such as resource and land use, along with infrastructure, can be incorporated into LCA algorithms, many have noted that the methodological approach still needs careful attention. In this Feature, McKone et al. outline seven grand challenges that need to be engaged and surmounted to provide the best way forward for biofuel use.


Atmospheric Environment | 1985

Control of Respirable Particles in Indoor Air with Portable Air Cleaners

F.J. Offermann; Richard G. Sextro; W.J. Fisk; D.T. Grimsrud; William W. Nazaroff; A.V. Nero; K.L. Revzan; J. Yater

Abstract Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles using in situ chamber decay tests. Following injection of cigarette smoke in a room-size chamber, decay rates for particle concentrations were obtained for total number concentration and for number concentration by particle size with and without air cleaner operation. The size distribution of the tobacco smoke particles was log normal with a count median diameter of 0.15 μm and a geometric standard deviation of 2.0. Without air cleaner operation, the natural mass-averaged surface deposition rate of particles was observed to be 0.1 h −1 . Air cleaning rates for particles were found to be negligible for several small panel-filter devices, a residential-sized ion-generator, and a pair of mixing fans. Electrostatic precipitators and extended surface filters removed particles at substantial rates, and a HEPA-type filter was most efficient air cleaner studied.

Collaboration


Dive into the William W. Nazaroff's collaboration.

Top Co-Authors

Avatar

Ashok J. Gadgil

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seema Bhangar

University of California

View shared research outputs
Top Co-Authors

Avatar

Richard G. Sextro

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Glen R. Cass

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A.V. Nero

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alfred T. Hodgson

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge