Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Willy M. J. M. Bogers is active.

Publication


Featured researches published by Willy M. J. M. Bogers.


Immunology Letters | 1999

HIV-1 vaccine-induced immune responses which correlate with protection from SHIV infection: compiled preclinical efficacy data from trials with ten different HIV-1 vaccine candidates.

Jonathan L. Heeney; Lennart Åkerblom; Susan W. Barnett; Willy M. J. M. Bogers; David Davis; Deborah H. Fuller; Gerrit Koopman; Thomas Lehner; Petra Mooij; Bror Morein; Carlo De Giuli Morghen; Brigitte Rosenwirth; Ernst J. Verschoor; Ralf Wagner; Hans Wolf

The specific immune mechanisms necessary and/or sufficient to elicit HIV-vaccine protection remain undefined. Utilising the SHIV rhesus macaque model the immunogenicity as well as the efficacy of ten different HIV-1 vaccine candidates was evaluated. Comparison of the immune responses induced, with the ability of the vaccine to protect from SHIV infection provided a means to determine which type of immune responses were necessary for protection. Vaccine candidates included VLPs, DNA, subunit protein with novel adjuvant formulations, ISCOMs and pox-virus vectors. Protection from SHIV infection was achieved in approximately half of the animals which received a primary intravenous cell-free challenge. The presence of CTL in the absence of other effector responses did not correlate with protection from this route and type of challenge. Virus neutralising antibodies (Nab) appeared to be necessary but alone were insufficient for protection. If Ag-specific IFN-gamma and/or IL-4 as well as lymphoproliferative (LP) responses were found with the lack of a detectable IL-2 response, then protection was not observed. Immunity correlated with the magnitude of Nab responses, beta-chemokines and as well as balanced, qualitative T-helper responses.


Virology | 2008

Systemic neutralizing antibodies induced by long interval mucosally primed systemically boosted immunization correlate with protection from mucosal SHIV challenge

Willy M. J. M. Bogers; David Davis; Ilona Baak; Elaine Kan; Sam Hofman; Yide Sun; Daniella Mortier; Ying Lian; Herman Oostermeijer; Zahra Fagrouch; Rob Dubbes; Martin van der Maas; Petra Mooij; Gerrit Koopman; Ernst J. Verschoor; Johannes P. M. Langedijk; Jun Zhao; Egidio Brocca-Cofano; Marjorie Robert-Guroff; Indresh K. Srivastava; Susan W. Barnett; Jonathan L. Heeney

Immune correlates of vaccine protection from HIV-1 infection would provide important milestones to guide HIV-1 vaccine development. In a proof of concept study using mucosal priming and systemic boosting, the titer of neutralizing antibodies in sera was found to correlate with protection of mucosally exposed rhesus macaques from SHIV infection. Mucosal priming consisted of two sequential immunizations at 12-week intervals with replicating host range mutants of adenovirus type 5 (Ad5hr) expressing the HIV-1(89.6p) env gene. Following boosting with either heterologous recombinant protein or alphavirus replicons at 12-week intervals animals were intrarectally exposed to infectious doses of the CCR5 tropic SHIV(SF162p4). Heterologous mucosal prime systemic boost immunization elicited neutralizing antibodies (Nabs), antibody-dependent cytotoxicity (ADCC), and specific patterns of antibody binding to envelope peptides. Vaccine induced protection did not correlate with the type of boost nor T-cell responses, but rather with the Nab titer prior to exposure.


Journal of Virology | 2004

Qualitative T-Helper Responses to Multiple Viral Antigens Correlate with Vaccine-Induced Immunity to Simian/Human Immunodeficiency Virus Infection

Petra Mooij; Ivonne G. Nieuwenhuis; Christiaan J. Knoop; Robert W. Doms; Willy M. J. M. Bogers; Peter ten Haaft; Henk Niphuis; Wim Koornstra; Kurt Bieler; Josef Köstler; Bror Morein; Aurelio Cafaro; Barbara Ensoli; Ralf Wagner; Jonathan L. Heeney

ABSTRACT Evidence is accumulating that CD4+ T-helper (Th) responses play a critical role in facilitating effector responses which are capable of controlling and even preventing human immunodeficiency virus (HIV) infection. The present work was undertaken to determine whether immunization with multiple antigens influenced individual Th responses and increased protection relative to a single antigen. Rhesus macaques were primed with DNA and boosted (immune-stimulating complex-formulated protein) with a combination of regulatory and structural antigens (Tat-Env-Gag) or with Tat alone. Immunization with combined antigens reduced the magnitude of the responses to Tat compared to the single-antigen immunization. Interestingly, the Th immune responses to the individual antigens were noticeably different. To determine whether the qualitative differences in vaccine-induced Th responses correlated with vaccine efficacy, animals were challenged intravenously with simian/human immunodeficiency virus (strain SHIV89.6p) 2 months following the final immunization. Animals that developed combined Th1- and Th2-like responses to Gag and Th2 dominant Env-specific responses were protected from disease progression. Interestingly, one animal that was completely protected from infection had the strongest IFN-γ and interleukin-2 (IL-2) responses prior to challenge, in addition to very strong IL-4 responses to Gag and Env. In contrast, animals with only a marked vaccine-induced Tat-specific Th2 response (no IFN-γ) were not protected from infection or disease. These data support the rationale that effective HIV vaccine-induced immunity requires a combination of potent Th1- and Th2-like responses best directed to multiple antigens.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Aerosol immunization with NYVAC and MVA vectored vaccines is safe, simple, and immunogenic

Max Corbett; Willy M. J. M. Bogers; Jonathan L. Heeney; Stefan Gerber; Christian Genin; Arnaud Didierlaurent; Herman Oostermeijer; Rob Dubbes; Gerco Braskamp; Stéphanie Lerondel; Carmen Elena Gómez; Mariano Esteban; Ralf Wagner; Ivanella Kondova; Petra Mooij; Sunita S. Balla-Jhagjhoorsingh; Niels Beenhakker; Gerrit Koopman; Sjoerd H. van der Burg; Jean-Pierre Kraehenbuhl; Alain Le Pape

Each year, approximately five million people die worldwide from putatively vaccine-preventable mucosally transmitted diseases. With respect to mass vaccination campaigns, one strategy to cope with this formidable challenge is aerosol vaccine delivery, which offers potential safety, logistical, and cost-saving advantages over traditional vaccination routes. Additionally, aerosol vaccination may elicit pivotal mucosal immune responses that could contain or eliminate mucosally transmitted pathogens in a preventative or therapeutic vaccine context. In this current preclinical non-human primate investigation, we demonstrate the feasibility of aerosol vaccination with the recombinant poxvirus-based vaccine vectors NYVAC and MVA. Real-time in vivo scintigraphy experiments with radiolabeled, aerosol-administered NYVAC-C (Clade C, HIV-1 vaccine) and MVA-HPV vaccines revealed consistent mucosal delivery to the respiratory tract. Furthermore, aerosol delivery of the vaccines was safe, inducing no vaccine-associated pathology, in particular in the brain and lungs, and was immunogenic. Administration of a DNA-C/NYVAC-C prime/boost regime resulted in both systemic and anal-genital HIV-specific immune responses that were still detectable 5 months after immunization. Thus, aerosol vaccination with NYVAC and MVA vectored vaccines constitutes a tool for large-scale vaccine efforts against mucosally transmitted pathogens.


Journal of Virology | 2000

Antiretroviral Therapy during Primary Immunodeficiency Virus Infection Can Induce Persistent Suppression of Virus Load and Protection from Heterologous Challenge in Rhesus Macaques

Brigitte Rosenwirth; Peter ten Haaft; Willy M. J. M. Bogers; Ivonne G. Nieuwenhuis; Henk Niphuis; Eva-Maria Kuhn; Norbert Bischofberger; Jonathan L. Heeney; Klaus Überla

ABSTRACT A limited period of chemotherapy during primary immunodeficiency virus infection might provide a long-term clinical benefit even if treatment is initiated at a time point when virus is already detectable in plasma. To evaluate this strategy, we infected rhesus macaques with the pathogenic simian/human immunodeficiency virus RT-SHIV and treated them with the antiretroviral drug (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA) for 8 weeks starting 7 or 14 days postinfection. PMPA treatment suppressed viral replication efficiently in all of the monkeys. After chemotherapy ended, virus replication rebounded and viral RNA in plasma reached levels comparable to that of the controls in four of the six monkeys. However, in the other two animals, virus loads peaked only moderately after withdrawal of the drug and then declined to low or even undetectable levels. These low levels of viremia remained stable for at least 31 weeks after cessation of therapy. At this time point, these two monkeys were challenged with SIV8980 to evaluate whether the host responses which were able to keep RT-SHIV replication under control were also sufficient to protect against infection with a highly pathogenic heterologous virus. Both monkeys proved to be protected against the heterologous virus. In one of the two animals, low levels of SIV8980 replication were detected. Thus, by chemotherapy during the acute phase of pathogenic virus replication, we could achieve not only persistent virus load suppression in two out of six monkeys but also protection from subsequent heterologous challenge. By this chemotherapeutic attenuation, the replication kinetics of attenuated viruses could be mimicked and a vaccination effect similar to that induced by live attenuated simian immunodeficiency virus vaccines was achieved.


European Journal of Immunology | 1999

Induction of inhibitory antibodies to the CCR5 chemokine receptor and their complementary role in preventing SIV infection in macaques

Thomas Lehner; Yufei Wang; Carl Doyle; Louisa Tao; Lesley A. Bergmeier; Elaine Mitchell; Willy M. J. M. Bogers; Jonathan L. Heeney; Charles Kelly

The seven‐transmembrane G‐protein‐linked CCR5 molecule functions as a major coreceptor for HIV or simian immunodeficiency virus (SIV) infection. Antibodies to CCR5 were studied in rhesus macaques immunized with SIV grown in human CD4+ T cells. These macaques were completely protected against i.v. challenge with live SIV. Sera from the protected macaques showed significantly greater inhibition of SIV replication (p < 0.001) and macrophage inflammatory protein‐1β‐generated CCR5‐dependent chemotaxis (p < 0.01) than sera from unprotected macaques, in the absence of significant neutralizing antibodies to SIV. These two functional assays demonstrate serum antibodies to the CCR5 receptors which were specifically inhibited by CCR5‐transfected HEK‐293 cells. We postulate that anti‐CCR5 antibodies may be complementary to β‐chemokines in blocking CCR5 coreceptors to HIV or SIV binding and fusion of CD4+ cells.


The Journal of Infectious Diseases | 2015

Potent Immune Responses in Rhesus Macaques Induced by Nonviral Delivery of a Self-amplifying RNA Vaccine Expressing HIV Type 1 Envelope With a Cationic Nanoemulsion

Willy M. J. M. Bogers; Herman Oostermeijer; Petra Mooij; Gerrit Koopman; Ernst J. Verschoor; David Davis; Jeffrey B. Ulmer; Luis A. Brito; Y Cu; K Banerjee; Gillis Otten; Brian J. Burke; Antu K. Dey; Jonathan L. Heeney; Xiaoying Shen; Georgia D. Tomaras; Celia C. LaBranche; David C. Montefiori; Hua-Xin Liao; Barton F. Haynes; Andrew Geall; Susan W. Barnett

Self-amplifying messenger RNA (mRNA) of positive-strand RNA viruses are effective vectors for in situ expression of vaccine antigens and have potential as a new vaccine technology platform well suited for global health applications. The SAM vaccine platform is based on a synthetic, self-amplifying mRNA delivered by a nonviral delivery system. The safety and immunogenicity of an HIV SAM vaccine encoding a clade C envelope glycoprotein formulated with a cationic nanoemulsion (CNE) delivery system was evaluated in rhesus macaques. The HIV SAM vaccine induced potent cellular immune responses that were greater in magnitude than those induced by self-amplifying mRNA packaged in a viral replicon particle (VRP) or by a recombinant HIV envelope protein formulated with MF59 adjuvant, anti-envelope binding (including anti-V1V2), and neutralizing antibody responses that exceeded those induced by the VRP vaccine. These studies provide the first evidence in nonhuman primates that HIV vaccination with a relatively low dose (50 µg) of formulated self-amplifying mRNA is safe and immunogenic.


Frontiers in Bioscience | 2003

LENTIVIRUS INFECTIONS AND MECHANISMS OF DISEASE RESISTANCE IN CHIMPANZEES

Erik Rutjens; Sunita S. Balla-Jhagjhoorsingh; Ernst J. Verschoor; Willy M. J. M. Bogers; Gerrit Koopman; Jonathan L. Heeney

One year after the human immunodeficiency virus (HIV) was pinpointed as the etiological agent of the acquired immunodeficiency syndrome (AIDS) in humans, chimpanzees were identified as one of the few living species also capable of sustaining persistent HIV-1 infection. During the mid to late 1980s, as the AIDS epidemic spread globally in humans, the chimpanzee was eagerly looked to for answers concerning effective AIDS therapies and a possible HIV vaccine. Although from the complicated inter-relationship of the AIDS virus with the human immune system, neither an effective vaccine nor a therapy has emerged, one remarkable observation has been that, unlike humans, chimpanzees are relatively resistant to the development of AIDS. In the meantime, HIV-1 vaccine and therapy research has moved on to the SHIV/SIVmac rhesus model as an alternative AIDS model for which disease intervention studies can be better performed, and chimpanzees are rarely studied anymore. However, pertinent questions about the mechanisms of resistance to AIDS in this species beg to be answered. After more than twenty years, the spotlight has recently been turned once again on to the chimpanzee, in the intense search for the origin of the AIDS epidemic. Here we review the history of HIV-1 infection in this species as well as the observations that have led to some of the current leading hypotheses regarding the resistance to AIDS in naturally infected African primates.


Immunology Letters | 1996

Immune strategies utilized by lentivirus infected chimpanzees to resist progression to AIDS.

Jonathan L. Heeney; Willy M. J. M. Bogers; Leo Buijs; Rob Dubbes; Peter ten Haaft; Wim Koornstra; Henk Niphuis; Peter Nara; Vera Teeuwsen

HIV-1 infected chimpanzees are relatively resistant to the development of AIDS despite their close genetic relatedness to humans and their susceptibility to HIV-1 infection. We have systematically studied possible reasons for their relative ability to maintain T helper (Th) cell numbers and immune competence in the presence of chronic HIV-1 infection. Factors which may alone or together cause the loss in T-cell dependent immunity include: (i) the loss of Th cell function; (ii) the loss of Th cells; and (iii) the loss of capacity for Th cell renewal. Differences in the in vivo and in vitro responses of T lymphocytes from chimpanzees and humans were compared for evidence of HIV-1 related T-cell dysfunction. In contrast to HIV infected individuals, HIV-1 infected chimpanzees maintained strong Th cell proliferative and cytokine responses after receiving tetanus toxoid boosts. In addition there was no abnormal Th1 to Th2 shift as is suggested to occur in AIDS patients. There was no evidence of Th cell dysfunction such as increased level of programmed cell death (PCD) or immune activation in HIV-1 infected chimpanzees in contrast to HIV-1 infected asymptomatic humans. Anergy could be induced with HIV-1 gp120 in human but not chimpanzee Th lymphocytes. We then asked if there was a direct loss of chimpanzee CD4+ cells due to HIV-1 infection in vitro. Infection of chimpanzee CD4+ lymphocyte cultures with HIV-1 in the absence of CD8+ cells resulted in marked cytopathic effect with complete lysis and loss of cells within 3 weeks. We concluded that most chronic HIV-1 infected chimpanzees were able to maintain relatively stable CD4+ lymphocyte numbers despite CD4+ lymphocyte destruction due to direct effects of the virus. Furthermore, there was no evidence of indirect Th cell loss, since neither increased levels of anergy nor apoptosis were observed. Lymph node biopsies from HIV-1 infected chimpanzees revealed that MHC class II rich regions of lymph nodes remained intact, in contrast to the involution of these regions in infected humans. This suggested that chimpanzees may maintain the capacity for Th cell renewal by preserving this MHC class II lymphoid environment. The data presented in this paper suggests that chimpanzees may preserve this critical MHC class II-Th cell environment by dramatically suppressing extra-cellular virus load and that this may be in part mediated by soluble lentivirus suppressing factors.


Journal of Virology | 2006

Transmission of Simian Immunodeficiency Virus SIVcpz and the Evolution of Infection in the Presence and Absence of Concurrent Human Immunodeficiency Virus Type 1 Infection in Chimpanzees

Jonathan L. Heeney; Erik Rutjens; Ernst J. Verschoor; Henk Niphuis; Peter ten Haaft; Scott Rouse; Hazel M. McClure; Sunita S. Balla-Jhagjhoorsingh; Willy M. J. M. Bogers; Mary Salas; Kathy E. Cobb; Luc Kestens; David A. Davis; Guido van der Groen; Valérie Courgnaud; Martine Peeters; Krishna K. Murthy

ABSTRACT Current data suggest that the human immunodeficiency virus type 1 (HIV-1) epidemic arose by transmission of simian immunodeficiency virus (SIV) SIVcpz from a subspecies of common chimpanzees (Pan troglodytes troglodytes) to humans. SIVcpz of chimpanzees is itself a molecular chimera of SIVs from two or more different monkey species, suggesting that recombination was made possible by coinfection of one individual animal with different lentiviruses. However, very little is known about SIVcpz transmission and the susceptibility to lentivirus coinfection of its natural host, the chimpanzee. Here, it is revealed that either infected plasma or peripheral blood mononuclear cells readily confer infection when exposure occurs by the intravenous or mucosal route. Importantly, the presence of preexisting HIV-1 infection did not modify the kinetics of SIVcpz infection once it was established by different routes. Although humoral responses appeared as early as 4 weeks postinfection, neutralization to SIVcpz-ANT varied markedly between animals. Analysis of the SIVcpz env sequence over time revealed the emergence of genetic viral variants and persistent SIVcpz RNA levels of between 104 and 105 copies/ml plasma regardless of the presence or absence of concurrent HIV-1 infection. These unique data provide important insight into possible routes of transmission, the kinetics of acute SIVcpz infection, and how readily coinfection with SIVcpz and other lentiviruses may be established as necessary preconditions for potential recombination.

Collaboration


Dive into the Willy M. J. M. Bogers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernst J. Verschoor

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar

Gerrit Koopman

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar

Petra Mooij

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar

Henk Niphuis

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar

Zahra Fagrouch

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar

Babs E. Verstrepen

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar

David Davis

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar

Herman Oostermeijer

Biomedical Primate Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ivonne G. Nieuwenhuis

Biomedical Primate Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge