Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wilmore C. Webley is active.

Publication


Featured researches published by Wilmore C. Webley.


Experimental Cell Research | 2003

Lipid rafts, caveolae, caveolin-1, and entry by Chlamydiae into host cells

Elizabeth S. Stuart; Wilmore C. Webley; Leonard C. Norkin

Obligate intracellular bacterial pathogens of the genus Chlamydia are reported to enter host cells by both clathrin-dependent and clathrin-independent processes. C. trachomatis serovar K recently was shown to enter cells via caveolae-like lipid raft domains. We asked here how widespread raft-mediated entry might be among the Chlamydia. We show that C. pneumoniae, an important cause of respiratory infections in humans that additionally is associated with cardiovascular disease, and C. psittaci, an important pathogen in domestic mammals and birds that also infects humans, each enter host cells via cholesterol-rich lipid raft microdomains. Further, we show that C. trachomatis serovars E and F also use these domains to enter host cells. The involvement of these membrane domains in the entry of these organisms was indicated by the sensitivity of their entry to the raft-disrupting agents Nystatin and filipin, and by their intracellular association with caveolin-1, a 22-kDa protein associated with the formation of caveolae in rafts. In contrast, caveolin-marked lipid raft domains do not mediate entry of C. trachomatis serovars A, 36B, and C, nor of LGV serovar L2 and MoPn. Finally, we show that entry of each of these chlamydial strains is independent of cellular expression of caveolin-1. Thus, entry via the Nystatin and filipin-sensitive pathway is dependent on lipid rafts containing cholesterol, rather than invaginated caveolae per se.


European Respiratory Journal | 2008

Occurrence of Chlamydia trachomatis and Chlamydia pneumoniae in paediatric respiratory infections.

Wilmore C. Webley; Yaphet Tilahun; K. Lay; Katir K. Patel; Elizabeth S. Stuart; Chester Andrzejewski; Paul S. Salva

An emerging body of evidence suggests that half of asthma in both children and adults is associated with chronic lung infection. The aim of the present study was to determine the frequency of viable Chlamydia pneumoniae (Cp) and C. trachomatis (Ct) in the respiratory tracts of paediatric patients with chronic respiratory diseases. Bronchoalveolar lavage fluid (BALF) samples obtained from 182 children undergoing bronchoscopy for clinical reasons were assayed using PCR analysis, in vitro tissue culture and immunofluorescence staining for the presence of Cp and Ct. Chlamydia-specific DNA was detected by PCR in 124 (68%) out of 182 patients; 79 were positive for Cp, 77 positive for Ct and 32 for both organisms; 75 patients had cultivable Chlamydia. Ct DNA prevalence decreased, whereas Cp positivity generally increased with age. A total of 59 out of 128 asthma patients and 16 out of 54 nonasthmatics were Chlamydia culture positive. When the patients were divided into inflammatory versus noninflammatory airway disease, there were 69 (46%) out of 150 and six (18%) out of 32 BALF samples with cultivable Chlamydia, respectively. Viable Chlamydia pneumoniae and Chlamydia trachomatis occur frequently in children with chronic respiratory diseases and may be more prevalent in asthma patients. To the current authors’ knowledge, this is the first report of viable Chlamydia trachomatis in the lungs of children.


PLOS ONE | 2012

Chlamydia pneumoniae-Specific IgE Is Prevalent in Asthma and Is Associated with Disease Severity

David L. Hahn; Allison Schure; Katir K. Patel; Tawanna S. Childs; Eduard Drizik; Wilmore C. Webley

Background Several Chlamydia pneumoniae (Cp) biomarkers have been associated with asthma but Cp-specific IgE (Cp IgE) has not been investigated extensively. Our objective was to investigate Cp IgE in community adult asthma patients. Methods (1) Prevalence of Cp IgE (measured by immunoblotting) and Cp DNA (by polymerase chain reaction) in peripheral blood, and biomarker associations with asthma severity. (2) Case-control studies of Cp IgE association with asthma using healthy blood donor (study 1) and non-asthmatic clinic patient (study 2) controls. Results Of 66 asthma subjects (mean age 40.9 years, range 5–75, 59% male, 45% ever-smokers) 33 (50%) were Cp IgE positive and 16 (24%) were Cp DNA positive (P = 0.001 for association of Cp IgE and DNA). Cp IgE was detected in 21% of mild intermittent asthma v 79% of severe persistent asthma (test for trend over severity categories, P = 0.002). Cp IgE detection was significantly (P = 0.001) associated with asthma when compared to healthy blood donor controls but not when compared to clinic controls. Conclusions Half of this sample of community asthma patients had detectable IgE against C. pneumoniae. Cp IgE was strongly and positively associated with asthma severity and with asthma when healthy blood donor controls were used. These results support the inclusion of Cp IgE as a biomarker in future studies of infectious contributions to asthma pathogenesis.


BMC Infectious Diseases | 2006

Detection of Chlamydia in the Peripheral Blood Cells of Normal Donors Using in Vitro Culture, Immunofluorescence Microscopy and Flow Cytometry Techniques

Frances Cirino; Wilmore C. Webley; Corrie West; Nl Croteau; Chester Andrzejewski; Elizabeth S. Stuart

BackgroundChlamydia trachomatis (Ct) and Chlamydia pneumoniae (Cp) are medically significant infectious agents associated with various chronic human pathologies. Nevertheless, specific roles in disease progression or initiation are incompletely defined. Both pathogens infect established cell lines in vitro and polymerase chain reaction (PCR) has detected Chlamydia DNA in various clinical specimens as well as in normal donor peripheral blood monocytes (PBMC). However, Chlamydia infection of other blood cell types, quantification of Chlamydia infected cells in peripheral blood and transmission of this infection in vitro have not been examined.MethodsCp specific titers were assessed for sera from 459 normal human donor blood (NBD) samples. Isolated white blood cells (WBC) were assayed by in vitro culture to evaluate infection transmission of blood cell borne chlamydiae. Smears of fresh blood samples (FB) were dual immunostained for microscopic identification of Chlamydia-infected cell types and aliquots also assessed using Flow Cytometry (FC).ResultsELISA demonstrated that 219 (47.7%) of the NBD samples exhibit elevated anti-Cp antibody titers. Imunofluorescence microscopy of smears demonstrated 113 (24.6%) of samples contained intracellular Chlamydia and monoclonals to specific CD markers showed that in vivo infection of neutrophil and eosinophil/basophil cells as well as monocytes occurs. In vitro culture established WBCs of 114 (24.8%) of the NBD samples harbored infectious chlamydiae, clinically a potentially source of transmission, FC demonstrated both Chlamydia infected and uninfected cells can be readily identified and quantified.ConclusionNBD can harbor infected neutrophils, eosinophil/basophils and monocytes. The chlamydiae are infectious in vitro, and both total, and cell type specific Chlamydia carriage is quantifiable by FC.


Pediatric Infectious Disease Journal | 2010

Infectious Chlamydia pneumoniae is associated with elevated interleukin-8 and airway neutrophilia in children with refractory asthma

Katir K. Patel; Alfin G. Vicencio; Zhongfang Du; Kalliope Tsirilakis; Paul S. Salva; Wilmore C. Webley

Background: Neutrophilic asthma is thought to be less responsive than eosinophilic asthma to anti-inflammatory therapies including corticosteroids. Chlamydia pneumoniae has been implicated in asthma, possibly by induction of interleukin (IL-8). We hypothesized that IL-8 is increased in the bronchoalveolar lavage (BAL) fluid from children with asthma and C. pneumoniae. Methods: BAL fluid was analyzed for C. pneumoniae and IL-8 using polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay from 2 asthma patient populations in the Bronx, NY and Massachusetts with an average age of 8 and 8.7 years old, respectively. For comparison, samples were also analyzed for C. trachomatis and Mycoplasma 16s DNA. Results: Of 18 Bronx samples analyzed, 6 (33%) were PCR-positive for C. pneumoniae, 10 (56%) for C. trachomatis, and 8 (44%) for Mycoplasma 16s DNA. IL-8 from C. pneumoniae-positive samples was 3.3-fold higher compared with negative samples (P = 0.003). There was no difference between patients tested for C. trachomatis or Mycoplasma. Of 84 Massachusetts samples analyzed, 42 (50%) were PCR-positive for C. pneumoniae, 42 (50%) for C. trachomatis, and 13 (16%) for Mycoplasma. IL-8 concentration from C. pneumoniae-positive samples was 10.49-fold higher compared with negative samples (P = 0.0001). As in the Bronx cohort, there were no differences between patients tested for C. trachomatis or Mycoplasma. Lastly, BAL neutrophilia predicted the presence of C. pneumoniae but not Mycoplasma or C. trachomatis. Conclusions: Children with asthma who were PCR-positive for C. pneumoniae demonstrated elevated concentrations of IL-8 and neutrophils in BAL fluid compared with similar patients who were positive for C. trachomatis or Mycoplasma organisms, but PCR-negative for C. pneumoniae. Undiagnosed C. pneumoniae infection in children may therefore contribute to poorly controlled asthma via induction of IL-8.


BMC Infectious Diseases | 2004

Caveolin-2 associates with intracellular chlamydial inclusions independently of caveolin-1

Wilmore C. Webley; Leonard C. Norkin; Elizabeth S. Stuart

BackgroundLipid raft domains form in plasma membranes of eukaryotic cells by the tight packing of glycosphingolipids and cholesterol. Caveolae are invaginated structures that form in lipid raft domains when the protein caveolin-1 is expressed. The Chlamydiaceae are obligate intracellular bacterial pathogens that replicate entirely within inclusions that develop from the phagocytic vacuoles in which they enter. We recently found that host cell caveolin-1 is associated with the intracellular vacuoles and inclusions of some chlamydial strains and species, and that entry of those strains depends on intact lipid raft domains. Caveolin-2 is another member of the caveolin family of proteins that is present in caveolae, but of unknown function.MethodsWe utilized a caveolin-1 negative/caveolin-2 positive FRT cell line and laser confocal immunofluorescence techniques to visualize the colocalization of caveolin-2 with the chlamydial inclusions.ResultsWe show here that in infected HeLa cells, caveolin-2, as well as caveolin-1, colocalizes with inclusions of C. pneumoniae (Cp), C. caviae (GPIC), and C. trachomatis serovars E, F and K. In addition, caveolin-2 also associates with C. trachomatis serovars A, B and C, although caveolin-1 did not colocalize with these organisms. Moreover, caveolin-2 appears to be specifically, or indirectly, associated with the pathogens at the inclusion membranes. Using caveolin-1 deficient FRT cells, we show that although caveolin-2 normally is not transported out of the Golgi in the absence of caveolin-1, it nevertheless colocalizes with chlamydial inclusions in these cells. However, our results also show that caveolin-2 did not colocalize with UV-irradiated Chlamydia in FRT cells, suggesting that in these caveolin-1 negative cells, pathogen viability and very likely pathogen gene expression are necessary for the acquisition of caveolin-2 from the Golgi.ConclusionCaveolin-2 associates with the chlamydial inclusion independently of caveolin-1. The function of caveolin-2, either in the uninfected cell or in the chlamydial developmental cycle, remains to be elucidated. Nevertheless, this second caveolin protein can now be added to the small number of host proteins that are associated with the inclusions of this obligate intracellular pathogen.


Vaccine | 2012

In vitro assessment of halobacterial gas vesicles as a Chlamydia vaccine display and delivery system.

Tawanna S. Childs; Wilmore C. Webley

Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide and while antibiotic treatment is effective in eliminating the pathogen, up to 70% of all infections are asymptomatic. Despite sustained efforts over the past 2 decades, an effective chlamydial vaccine remains elusive, due in large part to the lack of an effective delivery system. We explored the use of gas vesicles derived from Halobacterium salinarium as a potential display and delivery vehicle for chlamydial antigens of vaccine interest. Various size gene fragments coding for the major outer membrane protein (MOMP), outer membrane complex B (OmcB) and polymorphic outer membrane protein D (PompD) were integrated into and expressed as part of the gas vesicle protein C (gvpC) on the surface of these stable structures. The presence of the recombinant proteins was confirmed by Western blots probed using anti-gvpC and anti-Chlamydia antibodies as well as sera from Chlamydia-positive patients. Tissue culture evaluation revealed stability and a time-dependent degradation of recombinant gas vesicles (r-Gv) in human and animal cell lines. In vitro assessment using human foreskin fibroblasts (HFF) confirmed Toll-like receptor (TLR) 4 and 5 engagement by wild type and r-Gv, leading to MyD88 activation, TNF-α, IL-6 and IL-12 production. The data suggest that r-GV could be an effective, naturally adjuvanting, time-release antigen delivery system for immunologically relevant Chlamydia vaccine antigens which are readily recognized by human immune sera.


Respiratory Research | 2012

The prevalence and identity of Chlamydia -specific IgE in children with asthma and other chronic respiratory symptoms

Katir K. Patel; Erica A. Anderson; Paul S. Salva; Wilmore C. Webley

BackgroundRecent studies have confirmed the presence of viable Chlamydia in the bronchoalveolar lavage (BAL) fluid of pediatric patients with airway hyperresponsiveness. While specific IgG and IgM responses to C. pneumoniae are well described, the response and potential contribution of Ag-specific IgE are not known. The current study sought to determine if infection with Chlamydia triggers the production of pathogen-specific IgE in children with chronic respiratory diseases which might contribute to inflammation and pathology.MethodsWe obtained BAL fluid and serum from pediatric respiratory disease patients who were generally unresponsive to corticosteroid treatment as well as sera from age-matched control patients who saw their doctor for wellness checkups. Chlamydia-specific IgE was isolated from BAL and serum samples and their specificity determined by Western blot techniques. The presence of Chlamydia was confirmed by species-specific PCR and BAL culture assays.ResultsChlamydial DNA was detected in the BAL fluid of 134/197 (68%) patients. Total IgE increased with age until 15 years old and then decreased. Chlamydia-specific IgE was detected in the serum and/or BAL of 107/197 (54%) patients suffering from chronic respiratory disease, but in none of the 35 healthy control sera (p < 0.0001). Of the 74 BAL culture-positive patients, 68 (91.9%, p = 0.0001) tested positive for Chlamydia-specific IgE. Asthmatic patients had significantly higher IgE levels compared to non-asthmatics (p = 0.0001). Patients who were positive for Chlamydia DNA or culture had significantly higher levels of serum IgE compared to negative patients (p = 0.0071 and p = 0.0001 respectively). Only 6 chlamydial antigens induced Chlamydia-specific IgE and patients with C. pneumoniae-specific IgE had significantly greater levels of total IgE compared to C. pneumoniae-specific IgE negative ones (p = 0.0001).ConclusionsIgE antibodies play a central role in allergic inflammation; therefore production of Chlamydia-specific IgE may prove significant in the exacerbation of chronic, allergic airway diseases, thus highlighting a direct role for Chlamydia in asthma pathogenesis.


Trends in Microbiology | 2015

Infectious asthma triggers: time to revise the hygiene hypothesis?

Wilmore C. Webley; Kelly L. Aldridge

The hygiene hypothesis supports an inverse relationship between respiratory infections in early-life and atopic diseases. However, a recent study supports growing evidence that early-life infection and airway microbiome composition can significantly influence asthma inception and exacerbation later in life. This reignites discussions on infection-mediated asthma phenotypes and potential therapeutics.


Respirology | 2011

Colonization of paediatric lower respiratory tract with genital Mycoplasma species.

Katir K. Patel; Paul S. Salva; Wilmore C. Webley

Background and objective:  Recently, much attention has been given to the possible role played by pathogens that colonize neonatal or paediatric airway and their potential involvement in chronic respiratory disease. The goal of the current study was to evaluate the prevalence of Mycoplasma organisms in the BAL fluid of paediatric patients suffering from a variety of chronic respiratory diseases to determine if there was any clear disease association with bacterial presence.

Collaboration


Dive into the Wilmore C. Webley's collaboration.

Top Co-Authors

Avatar

Elizabeth S. Stuart

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Katir K. Patel

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chester Andrzejewski

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Frances Cirino

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Corrie West

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

David L. Hahn

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Nl Croteau

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Alfin G. Vicencio

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Eduard Drizik

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge