Wim B. van den Berg
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wim B. van den Berg.
Arthritis Research & Therapy | 2004
Erik Lubberts; Marije I. Koenders; Wim B. van den Berg
Interleukin-17 (IL-17) is a T cell cytokine spontaneously produced by cultures of rheumatoid arthritis (RA) synovial membranes. High levels have been detected in the synovial fluid of patients with RA. The trigger for IL-17 is not fully identified; however, IL-23 promotes the production of IL-17 and a strong correlation between IL-15 and IL-17 levels in synovial fluid has been observed. IL-17 is a potent inducer of various cytokines such as tumor necrosis factor (TNF)-α, IL-1, and receptor activator of NF-κB ligand (RANKL). Additive or even synergistic effects with IL-1 and TNF-α in inducing cytokine expression and joint damage have been shown in vitro and in vivo. This review describes the role of IL-17 in the pathogenesis of destructive arthritis with a major focus on studies in vivo in arthritis models. From these studies in vivo it can be concluded that IL-17 becomes significant when T cells are a major element of the arthritis process. Moreover, IL-17 has the capacity to induce joint destruction in an IL-1-independent manner and can bypass TNF-dependent arthritis. Anti-IL-17 cytokine therapy is of interest as an additional new anti-rheumatic strategy for RA, in particular in situations in which elevated IL-17 might attenuate the response to anti-TNF/anti-IL-1 therapy.
Journal of Clinical Investigation | 2008
Shahla Abdollahi-Roodsaz; Leo A. B. Joosten; Marije I. Koenders; Isabel Devesa; Mieke F. Roelofs; Timothy R. D. J. Radstake; Marleen Heuvelmans-Jacobs; Shizuo Akira; Martin J.H. Nicklin; Fátima Ribeiro-Dias; Wim B. van den Berg
TLRs may contribute to the progression of rheumatoid arthritis through recognition of microbial or host-derived ligands found in arthritic joints. Here, we show that TLR2 and TLR4, but not TLR9, are involved in the pathogenesis of autoimmune arthritis and play distinct roles in the regulation of T cells and cytokines. We investigated the involvement of TLR2, TLR4, and TLR9 in the progression of arthritis using IL-1 receptor antagonist-knockout (IL1rn-/-) mice, which spontaneously develop an autoimmune T cell-mediated arthritis. Spontaneous onset of arthritis was dependent on TLR activation by microbial flora, as germ-free mice did not develop arthritis. Clinical and histopathological evaluation of IL1rn-/-Tlr2-/- mice revealed more severe arthritis, characterized by reduced suppressive function of Tregs and substantially increased IFN-gamma production by T cells. IL1rn-/-Tlr4-/- mice were, in contrast, protected against severe arthritis and had markedly lower numbers of Th17 cells and a reduced capacity to produce IL-17. A lack of Tlr9 did not affect the progression of arthritis. While any therapeutic intervention targeting TLR2 still seems complicated, the strict position of TLR4 upstream of a number of pathogenic cytokines including IL-17 provides an interesting potential therapeutic target for rheumatoid arthritis.
Nature Medicine | 2006
Mihai G. Netea; Leo A. B. Joosten; Eli C. Lewis; Dalan R. Jensen; Peter J. Voshol; Bart Jan Kullberg; Cees J. Tack; Han van Krieken; Soo Hyun Kim; Anton F. H. Stalenhoef; Fons A. J. van de Loo; Ineke Verschueren; Leslie K. Pulawa; Shizuo Akira; Robert H. Eckel; Charles A. Dinarello; Wim B. van den Berg; Jos W. M. van der Meer
Here we report the presence of hyperphagia, obesity and insulin resistance in knockout mice deficient in IL-18 or IL-18 receptor, and in mice transgenic for expression of IL-18 binding protein. Obesity of Il18−/− mice resulted from accumulation of fat tissue based on increased food intake. Il18−/− mice also had hyperinsulinemia, consistent with insulin resistance and hyperglycemia. Insulin resistance was secondary to obesity induced by increased food intake and occurred at the liver level as well as at the muscle and fat-tissue level. The molecular mechanisms responsible for the hepatic insulin resistance in the Il18−/− mice involved an enhanced expression of genes associated with gluconeogenesis in the liver of Il18−/− mice, resulting from defective phosphorylation of STAT3. Recombinant IL-18 (rIL-18) administered intracerebrally inhibited food intake. In addition, rIL-18 reversed hyperglycemia in Il18−/− mice through activation of STAT3 phosphorylation. These findings indicate a new role of IL-18 in the homeostasis of energy intake and insulin sensitivity.
Journal of Clinical Investigation | 2000
Erik Lubberts; Leo A. B. Joosten; Martine Chabaud; Liduine van den Bersselaar; Birgitte Oppers; Christina J. J. Coenen-de Roo; Carl D. Richards; Pierre Miossec; Wim B. van den Berg
Bone destruction is the most difficult target in the treatment of rheumatoid arthritis (RA). Here, we report that local overexpression of IL-4, introduced by a recombinant human type 5 adenovirus vector (Ad5E1mIL-4) prevents joint damage and bone erosion in the knees of mice with collagen arthritis (CIA). No difference was noted in the course of CIA in the injected knee joints between Ad5E1mIL-4 and the control vector, but radiographic analysis revealed impressive reduction of joint erosion and more compact bone structure in the Ad5E1mIL-4 group. Although severe inflammation persisted in treated mice, Ad5E1mIL-4 prevented bone erosion and diminished tartrate-resistant acid phosphatase (TRAP) activity, indicating that local IL-4 inhibits the formation of osteoclast-like cells. Messenger RNA levels of IL-17, IL-12, and cathepsin K in the synovial tissue were suppressed, as were IL-6 and IL-12 protein production. Osteoprotegerin ligand (OPGL) expression was markedly suppressed by local IL-4, but no loss of OPG expression was noted with Ad5E1mIL-4 treatment. Finally, in in vitro studies, bone samples of patients with arthritis revealed consistent suppression by IL-4 of type I collagen breakdown. IL-4 also enhanced synthesis of type I procollagen, suggesting that it promoted tissue repair. These findings may have significant implications for the prevention of bone erosion in arthritis.
Journal of Immunology | 2003
Erik Lubberts; Liduine van den Bersselaar; Birgitte Oppers-Walgreen; Paul Schwarzenberger; Christina J. J. Coenen-de Roo; Jay K. Kolls; Leo A. B. Joosten; Wim B. van den Berg
IL-17 is a T cell-derived proinflammatory cytokine in experimental arthritis and is a stimulator of osteoclastogenesis in vitro. In this study, we report the effects of IL-17 overexpression (AdIL-17) in the knee joint of type II collagen-immunized mice on bone erosion and synovial receptor activator of NF-κB ligand (RANKL)/receptor activator of NF-κB/osteoprotegerin (OPG) expression. Local IL-17 promoted osteoclastic bone destruction, which was accompanied with marked tartrate-resistant acid phosphatase activity at sites of bone erosion in cortical, subchondral, and trabecular bone. Accelerated expression of RANKL and its receptor, receptor activator of NF-κB, was found in the synovial infiltrate and at sites of focal bone erosion, using specific immunohistochemistry. Interestingly, AdIL-17 not only enhanced RANKL expression but also strongly up-regulated the RANKL/OPG ratio in the synovium. Comparison of arthritic mice from the AdIL-17 collagen-induced arthritis group with full-blown collagen-arthritic mice having similar clinical scores for joint inflammation revealed lower RANKL/OPG ratio and tartrate-resistant acid phosphatase activity in the latter group. Interestingly, systemic OPG treatment prevented joint damage induced by local AdIL-17 gene transfer in type II collagen-immunized mice. These findings suggest T cell IL-17 to be an important inducer of RANKL expression leading to loss of the RANKL/OPG balance, stimulating osteoclastogenesis and bone erosion in arthritis.
American Journal of Pathology | 2005
Marije I. Koenders; E Lubberts; Birgitte Oppers-Walgreen; Liduine van den Bersselaar; M.M.A. Helsen; Franco Di Padova; Annemieke M. H. Boots; Hermann Gram; Leo A. B. Joosten; Wim B. van den Berg
Rheumatoid arthritis is characterized by an intermittent course of disease with alternate periods of remission and relapse. T cells, and in particular the T-cell cytokine interleukin-17 (IL-17), are expected to be involved in arthritic flares. Here, we report that neutralizing endogenous IL-17 during reactivation of antigen-induced arthritis prevents joint inflammation and bone erosion. Synovial IL-17 mRNA expression was clearly up-regulated during primary arthritis and was further enhanced after antigen rechallenge. Neutralization of IL-17 significantly prevented joint swelling at day 1 of flare and significantly suppressed joint inflammation and cartilage proteoglycan depletion at day 4, as assessed by histology. Blocking IL-17 also clearly reduced bone erosions. Cathepsin K, a marker of osteoclast-like activity, and synovial RANKL mRNA expression were both suppressed. The degree of bone erosions strongly correlated with the severity of joint inflammation, suggesting that anti-IL-17 treatment reduced bone erosion by suppressing joint inflammation. Interestingly, blocking IL-17 suppressed synovial expression of both IL-1beta and tumor necrosis factor-alpha, whereas blocking IL-1 did not affect tumor necrosis factor-alpha levels. These data indicate that IL-17 is an important upstream mediator in joint pathology during flare-up of experimental arthritis.
Cell Host & Microbe | 2009
Frank L. van de Veerdonk; Renoud J. Marijnissen; Bart Jan Kullberg; Hans J. P. M. Koenen; Shih-Chin Cheng; I. Joosten; Wim B. van den Berg; David L. Williams; Jos W. M. van der Meer; Leo A. B. Joosten; Mihai G. Netea
The cytokine IL-17 controls neutrophil-mediated inflammatory responses. The pattern recognition receptor(s) that induce Th17 responses during infection, in the absence of artificial mitogenic stimulation with anti-CD3/anti-CD28 antibodies, remain obscure. We investigated the innate immune receptors and pathogen-associated molecular patterns involved in triggering Th17 responses during pathogen-specific host defense. The prototypic fungal pathogen Candida albicans was found to induce IL-17 more potently than Gram-negative bacteria. Candida mannan, but not zymosan, beta-glucans, Toll-like receptor (TLR) agonists, or the NOD2 ligand MDP, induced IL-17 production in the absence of anti-CD3/anti-CD28 antibodies. Candida-induced IL-17 response was dependent on antigen-presenting cells and the macrophage mannose receptor (MR), demonstrating that Candida mannan is not simply a mitogenic stimulus. The TLR2/dectin-1 pathway, but not TLR4 or NOD2, amplified MR-induced IL-17 production. This study identifies the specific pattern recognition receptors that trigger the Th17 response induced by a human pathogen in the absence of mitogenic stimulation.
Nature Reviews Rheumatology | 2009
Wim B. van den Berg; Pierre Miossec
The discovery of interleukin (IL)-17 and its major cell source, the type 17 T-helper (TH17) lymphocyte, has been a major step in the understanding of erosive arthritis. This Review summarizes current knowledge of the role of IL-17 in this context derived from both animal models and studies in patients with rheumatoid arthritis. Evidence shows that IL-17 is present at sites of inflammatory arthritis and that, in synergistic interactions, it amplifies the inflammation induced by other cytokines, primarily tumor necrosis factor. In several animal models of arthritis, inhibition of IL-17 limits inflammation and joint erosion. Initial observations from phase I trials show that signs and symptoms of RA are significantly suppressed following treatment with anti-IL-17 antibodies, without notable adverse effects. The emergence of IL-17 blockade as a future therapy in rheumatoid arthritis is highlighted, along with the potential goals and limitations of this therapeutic approach.
Journal of Immunology | 2006
Mieke F. Roelofs; Wilbert C. Boelens; Leo A. B. Joosten; Shahla Abdollahi-Roodsaz; Jeroen Geurts; Liza U. Wunderink; B. Willem Schreurs; Wim B. van den Berg; Timothy R. D. J. Radstake
Dendritic cells (DCs) are specialized APCs that can be activated upon pathogen recognition as well as recognition of endogenous ligands, which are released during inflammation and cell stress. The recognition of exogenous and endogenous ligands depends on TLRs, which are abundantly expressed in synovial tissue from rheumatoid arthritis (RA) patients. Furthermore TLR ligands are found to be present in RA serum and synovial fluid and are significantly increased, compared with serum and synovial fluid from healthy volunteers and patients with systemic sclerosis and systemic lupus erythematosus. Identification of novel endogenous TLR ligands might contribute to the elucidation of the role of TLRs in RA and other autoimmune diseases. In this study, we investigated whether five members of the small heat shock protein (HSP) family were involved in TLR4-mediated DC activation and whether these small HSPs were present in RA synovial tissue. In vitro, monocyte-derived DCs were stimulated with recombinant αA crystallin, αB crystallin, HSP20, HSPB8, and HSP27. Using flow cytometry and multiplex cytokine assays, we showed that both αA crystallin and HSPB8 were able to activate DCs and that this activation was TLR4 dependent. Furthermore, Western blot and immunohistochemistry showed that HSPB8 was abundantly expressed in synovial tissue from patients with RA. With these experiments, we identified sHSP αA crystallin and HSPB8 as two new endogenous TLR4 ligands from which HSPB8 is abundantly expressed in RA synovial tissue. These findings suggest a role for HSPB8 during the inflammatory process in autoimmune diseases such as RA.
Journal of Clinical Investigation | 2001
Christine Plater-Zyberk; Leo A. B. Joosten; M.M.A. Helsen; Pascale Sattonnet-Roche; Christiane Siegfried; Sami Alouani; Fons A. J. van de Loo; Pierre Graber; Shuki Aloni; Rocco Cirillo; Erik Lubberts; Charles A. Dinarello; Wim B. van den Berg; Yolande Chvatchko
Two distinct IL-18 neutralizing strategies, i.e. a rabbit polyclonal anti-mouse IL-18 IgG and a recombinant human IL-18 binding protein (rhIL-18BP), were used to treat collagen-induced-arthritic DBA/1 mice after clinical onset of disease. The therapeutic efficacy of neutralizing endogenous IL-18 was assessed using different pathological parameters of disease progression. The clinical severity in mice undergoing collagen-induced arthritis was significantly reduced after treatment with both IL-18 neutralizing agents compared to placebo treated mice. Attenuation of the disease was associated with reduced cartilage erosion evident on histology. The decreased cartilage degradation was further documented by a significant reduction in the levels of circulating cartilage oligomeric matrix protein (an indicator of cartilage turnover). Both strategies efficiently slowed disease progression, but only anti-IL-18 IgG treatment significantly decreased an established synovitis. Serum levels of IL-6 were significantly reduced with both neutralizing strategies. In vitro, neutralizing IL-18 resulted in a significant inhibition of TNF-alpha, IL-6, and IFN-gamma secretion by macrophages. These results demonstrate that neutralizing endogenous IL-18 is therapeutically efficacious in the murine model of collagen-induced arthritis. IL-18 neutralizing antibody or rhIL-18BP could therefore represent new disease-modifying anti-rheumatic drugs that warrant testing in clinical trials in patients with rheumatoid arthritis.