Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wim Pyckhout-Hintzen is active.

Publication


Featured researches published by Wim Pyckhout-Hintzen.


Nature Materials | 2008

Unexpected power-law stress relaxation of entangled ring polymers

Michael Kapnistos; M. Lang; Dimitris Vlassopoulos; Wim Pyckhout-Hintzen; D. Richter; D. Cho; Taihyun Chang; Michael Rubinstein

After many years of intense research, most aspects of the motion of entangled polymers have been understood. Long linear and branched polymers have a characteristic entanglement plateau and their stress relaxes by chain reptation or branch retraction, respectively. In both mechanisms, the presence of chain ends is essential. But how do entangled polymers without ends relax their stress? Using properly purified high-molar-mass ring polymers, we demonstrate that these materials exhibit self-similar dynamics, yielding a power-law stress relaxation. However, trace amounts of linear chains at a concentration almost two decades below their overlap cause an enhanced mechanical response. An entanglement plateau is recovered at higher concentrations of linear chains. These results constitute an important step towards solving an outstanding problem of polymer science and are useful for manipulating properties of materials ranging from DNA to polycarbonate. They also provide possible directions for tuning the rheology of entangled polymers.


Soft Matter | 2007

Structure of interacting aggregates of silica nanoparticles in a polymer matrix: small-angle scattering and reverse Monte Carlo simulations

Julian Oberdisse; P.J. Hine; Wim Pyckhout-Hintzen

Reinforcement of elastomers by colloidal nanoparticles is an important application where microstructure needs to be understood-and, if possible, controlled-if one wishes to tune macroscopic mechanical properties. Here, the three-dimensional structure of large aggregates of nanometric silica particles embedded in a soft polymeric matrix is determined by small angle neutron scattering. Experimentally, the crowded environment leading to strong reinforcement induces a strong interaction between aggregates, which generates a prominent interaction peak in the scattering. We propose to analyze the total signal by means of a decomposition in a classical colloidal structure factor describing aggregate interaction and an aggregate form factor determined by a reverse Monte Carlo technique. The result gives new insight to the shape of aggregates and their complex interaction in elastomers. For comparison, fractal models for aggregate scattering are also discussed.


Langmuir | 2011

Interactions between block copolymers and single-walled carbon nanotubes in aqueous solutions: a small-angle neutron scattering study.

Meirav Granite; Aurel Radulescu; Wim Pyckhout-Hintzen; Yachin Cohen

The amphiphilic copolymers of the Pluronic family are known to be excellent dispersants for single-walled carbon nanotubes (SWCNT) in water, especially F108 and F127, which have rather long end-blocks of poly(ethylene oxide) (PEO). In this study, the structure of the CNT/polymer hybrid formed in water is evaluated by measurements of small-angle neutron scattering (SANS) with contrast variation, as supported by cryo-transmission electron microscopy (cryo-TEM) imaging. The homogeneous, stable, inklike dispersions exhibited very small isolated bundles of carbon nanotubes in cryo-TEM images. SANS experiments were conducted at different D(2)O/H(2)O content of the dispersing solvent. The data for both systems showed surprisingly minimal intensity values at 70% D(2)O solvent composition, which is much higher than the expected value of 17% D(2)O that is based on the scattering length density (SLD) of PEO. At this near match point, the data exhibited a q(-1) power law relation of intensity to the scattering vector (q), indicating rodlike entities. Two models are evaluated, as extensions to Pedersons block copolymer micelles models. One is loosely adsorbed polymer chains on a rodlike CNT bundle. In the other, the hydrophobic block is considered to form a continuous hydrated shell on the CNT surface, whereas the hydrophilic blocks emanate into the solvent. Both models were found to fit the experimental data reasonably well. The model fit required special considerations of the tight association of water molecules around PEO chains and slight isotopic selectivity.


Soft Matter | 2011

Structure and dynamics of polymer rings by neutron scattering: breakdown of the Rouse model

Ana R. Brás; Rossana Pasquino; Thanasis Koukoulas; Georgia Tsolou; Olaf Holderer; Aurel Radulescu; Jürgen Allgaier; Vlasis G. Mavrantzas; Wim Pyckhout-Hintzen; Andreas Wischnewski; Dimitris Vlassopoulos; D. Richter

We present a static and quasi-elastic neutron scattering study on both the structure and dynamics of a ring polymer in a ring and linear polymer melt, respectively. In the first case, the ring structure proved to be significantly more compact compared to the linear chain with the same molecular weight. In the mixture, the ring molecules swell as was confirmed by small angle neutron scattering (SANS) in accordance with both theory and simulation work. The dynamical behavior of both systems, which for the first time has been explored by neutron spin echo spectroscopy (NSE), shows a surprisingly fast center of mass diffusion as compared to the linear polymer. These results agree qualitatively with the presented atomistic MD simulations. The fast diffusion turned out to be an explicit violation of the Rouse model.


Polymer | 2003

Reinforcement of model filled elastomers: synthesis and characterization of the dispersion state by SANS measurements

J. Berriot; H. Montes; F. Martin; M. Mauger; Wim Pyckhout-Hintzen; G. Meier; Henrich Frielinghaus

This work is the first part of a study devoted to the understanding and the determination of the molecular mechanisms that are at the origin of the specific properties shown by reinforced elastomers. Different model filled elastomers composed of cross-linked polyethylacrylate chains reinforced with grafted silica nanoparticles were prepared varying the reactivity of the coupling agent with the ethylacrylate monomers. They were synthetized applying and adapting the method developed by Ford et al. [11] which consists to polymerize a colloidal suspension of grafted silica particles in acrylate monomers. In this paper we will present how filled elastomers having different dispersion states can be prepared whilst keeping the same interactions between the particles and the polymer chains. The dispersion states were characterized by Small Angle Neutron Scattering. We found that there are two opposite effects which control the final dispersion state of these filled elastomers during the polymerization. The first one is a depletion mechanism favoring the formation of aggregates. The second one is a repulsive steric interaction due to the growth of polymer chains from the particle surfaces avoiding contacts between the silica inclusions. Using these results we can prepare sets of samples having the same particle/matrix interface but different dispersions states. By comparing their mechanical properties we should to able to estimate the relative weight of the dispersion state quality and the one of the particle/matrix interface on the mechanical behavior of these filled elastomers.


Journal of Chemical Physics | 2006

A microscopic look at the reinforcement of silica-filled rubbers

A. Botti; Wim Pyckhout-Hintzen; D. Richter; Volker S. Urban; E. Straube

The deformed structure of silica-filled elastomers under uniaxial strain has been investigated using a combination of both small angle x-ray scattering and small angle neutron scattering methods. Using an extraction procedure and taking into account the two-phase nature of these polymer-based composites, the single chain scattering behavior as well as filler properties could be obtained uniquely on identical samples. For the first time the deformation of the rubbery matrix on the length scale of the network chain in a filled rubber could be determined and therewith the importance of matrix overstrain for the mechanical properties was estimated. Additionally, the determination of filler deformation and filler destruction presents microscopic details of the mechanisms of filler networking and the stress-softening Mullins effect.


Macromolecules | 2017

Tough Supramolecular Hydrogel Based on Strong Hydrophobic Interactions in a Multiblock Segmented Copolymer

Marko Mihajlovic; Mariapaola Staropoli; Marie-Sousai Appavou; Hans M. Wyss; Wim Pyckhout-Hintzen; Rint P. Sijbesma

We report the preparation and structural and mechanical characterization of a tough supramolecular hydrogel, based exclusively on hydrophobic association. The system consists of a multiblock, segmented copolymer of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dimer fatty acid (DFA) building blocks. A series of copolymers containing 2K, 4K, and 8K PEG were prepared. Upon swelling in water, a network is formed by self-assembly of hydrophobic DFA units in micellar domains, which act as stable physical cross-link points. The resulting hydrogels are noneroding and contain 75–92 wt % of water at swelling equilibrium. Small-angle neutron scattering (SANS) measurements showed that the aggregation number of micelles ranges from 2 × 102 to 6 × 102 DFA units, increasing with PEG molecular weight. Mechanical characterization indicated that the hydrogel containing PEG 2000 is mechanically very stable and tough, possessing a tensile toughness of 4.12 MJ/m3. The high toughness, processability, and ease of preparation make these hydrogels very attractive for applications where mechanical stability and load bearing features of soft materials are required.


Langmuir | 2014

Monitoring the internal structure of poly(N-vinylcaprolactam) microgels with variable cross-link concentration.

Florian Schneider; Andreea Balaceanu; Artem Feoktystov; Vitaliy Pipich; Yaodong Wu; Jürgen Allgaier; Wim Pyckhout-Hintzen; Andrij Pich; Gerald J. Schneider

The combination of a set of complementary techniques allows us to construct an unprecedented and comprehensive picture of the internal structure, temperature dependent swelling behavior, and the dependence of these properties on the cross-linker concentration of microgel particles based on N-vinylcaprolactam (VCL). The microgels were synthesized by precipitation polymerization using different amounts of cross-linking agent. Characterization was performed by small-angle neutron scattering (SANS) using two complementary neutron instruments to cover a uniquely broad Q-range with one probe. Additionally we used dynamic light scattering (DLS), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). Previously obtained nuclear magnetic resonance spectroscopy (NMR) results on the same PVCL particles are utilized to round the picture off. Our study shows that both the particle radius and the cross-link density and therefore also the stiffness of the microgels rises with increasing cross-linker content. Hence, more cross-linker reduces the swelling capability distinctly. These findings are supported by SANS and AFM measurements. Independent DLS experiments also found the increase in particle size but suggest an unchanged cross-link density. The reason for the apparent contradiction is the indirect extraction of the parameters via a model in the evaluation of DLS measurements. The more direct approach in AFM by evaluating the cross section profiles of observed microgel particles gives evidence of significantly softer and more deformable particles at lower cross-linker concentrations and therefore verifies the change in cross-link density. DSC data indicate a minor but unexpected shift of the volume phase transition temperature (VPTT) to higher temperatures and exposes a more heterogeneous internal structure of the microgels with increasing cross-link density. Moreover, a change in the total energy transfer during the VPT gives evidence that the strength of hydrogen bonds is significantly affected by the cross-link density. A strong and reproducible deviation of the material density of the cross-linked microgel polymer chains toward a higher value compared to the respective linear chains has yet to be explained.


Physical Review Letters | 2015

Sensing Polymer Chain Dynamics through Ring Topology: A Neutron Spin Echo Study

Sebastian Gooßen; Margarita Krutyeva; Melissa Sharp; Artem Feoktystov; Jürgen Allgaier; Wim Pyckhout-Hintzen; Andreas Wischnewski; D. Richter

Using neutron spin echo spectroscopy, we show that the segmental dynamics of polymer rings immersed in linear chains is completely controlled by the host. This transforms rings into ideal probes for studying the entanglement dynamics of the embedding matrix. As a consequence of the unique ring topology, in long chain matrices the entanglement spacing is directly revealed, unaffected by local reptation of the host molecules beyond this distance. In shorter entangled matrices, where in the time frame of the experiment secondary effects such as contour length fluctuations or constraint release could play a role, the ring motion reveals that the contour length fluctuation is weaker than assumed in state-of-the-art rheology and that the constraint release is negligible. We expect that rings, as topological probes, will also grant direct access to molecular aspects of polymer motion which have been inaccessible until now within chains adhering to more complex architectures.


Journal of Chemical Physics | 2002

Heterogeneous structure of poly(vinyl chloride) as the origin of anomalous dynamical behavior

A. Arbe; A. Moral; Angel Alegría; J. Colmenero; Wim Pyckhout-Hintzen; D. Richter; B. Farago; B. Frick

We have investigated the thermal evolution of the structure and the dynamics of poly(vinyl chloride) (PVC) in a wide temperature range. Corroborating earlier findings, small angle neutron scattering revealed the presence of structural heterogeneities. On the other hand, the single chain form factor corresponds to that of Gaussian chains. Gradually with increasing temperature the system becomes homogeneous. A simple description of the heterogeneities in terms of microcrystallites is forwarded. The dynamical behavior of PVC has been investigated combining broadband dielectric spectroscopy (DS) with coherent and incoherent neutron scattering. In a wide temperature range broadband DS facilitated a precise determination of the dynamic response related to the segmental relaxation. Close to the glass transition temperature the line shape strongly deviates from the usual Kohlrausch–Williams–Watts functional form of common glassforming systems. Moreover, the characteristic relaxation time observed by incoherent sc...

Collaboration


Dive into the Wim Pyckhout-Hintzen's collaboration.

Top Co-Authors

Avatar

D. Richter

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana R. Brás

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Allgaier

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aurel Radulescu

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter Richter

Forschungszentrum Jülich

View shared research outputs
Researchain Logo
Decentralizing Knowledge