Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wim Van Paesschen is active.

Publication


Featured researches published by Wim Van Paesschen.


Brain | 2008

Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1

Arvid Suls; Peter Dedeken; Karolien Goffin; Hilde Van Esch; Patrick Dupont; David Cassiman; Judith S. Kempfle; Thomas V. Wuttke; Yvonne G. Weber; Holger Lerche; Zaid Afawi; Wim Vandenberghe; Amos D. Korczyn; Samuel F. Berkovic; Dana Ekstein; Sara Kivity; Philippe Ryvlin; Lieve Claes; Liesbet Deprez; Snezana Maljevic; Alberto Vargas; Tine Van Dyck; Dirk Goossens; Jurgen Del-Favero; Koen Van Laere; Wim Van Paesschen

Paroxysmal exercise-induced dyskinesia (PED) can occur in isolation or in association with epilepsy, but the genetic causes and pathophysiological mechanisms are still poorly understood. We performed a clinical evaluation and genetic analysis in a five-generation family with co-occurrence of PED and epilepsy (n = 39), suggesting that this combination represents a clinical entity. Based on a whole genome linkage analysis we screened SLC2A1, encoding the glucose transporter of the blood-brain-barrier, GLUT1 and identified heterozygous missense and frameshift mutations segregating in this and three other nuclear families with a similar phenotype. PED was characterized by choreoathetosis, dystonia or both, affecting mainly the legs. Predominant epileptic seizure types were primary generalized. A median CSF/blood glucose ratio of 0.52 (normal >0.60) in the patients and a reduced glucose uptake by mutated transporters compared with the wild-type as determined in Xenopus oocytes confirmed a pathogenic role of these mutations. Functional imaging studies implicated alterations in glucose metabolism in the corticostriate pathways in the pathophysiology of PED and in the frontal lobe cortex in the pathophysiology of epileptic seizures. Three patients were successfully treated with a ketogenic diet. In conclusion, co-occurring PED and epilepsy can be due to autosomal dominant heterozygous SLC2A1 mutations, expanding the phenotypic spectrum associated with GLUT1 deficiency and providing a potential new treatment option for this clinical syndrome.


Nature Genetics | 2013

Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes

Johannes R. Lemke; Dennis Lal; Eva M. Reinthaler; Isabelle Steiner; Michael Nothnagel; Michael Alber; Kirsten Geider; Bodo Laube; Michael Schwake; Katrin Finsterwalder; Andre Franke; Markus Schilhabel; Johanna A. Jähn; Hiltrud Muhle; Rainer Boor; Wim Van Paesschen; Roberto Horacio Caraballo; Natalio Fejerman; Sarah Weckhuysen; Jan Larsen; Rikke S. Møller; Helle Hjalgrim; Laura Addis; Shan Tang; Elaine Hughes; Deb K. Pal; Kadi Veri; Ulvi Vaher; Tiina Talvik; Petia Dimova

Idiopathic focal epilepsy (IFE) with rolandic spikes is the most common childhood epilepsy, comprising a phenotypic spectrum from rolandic epilepsy (also benign epilepsy with centrotemporal spikes, BECTS) to atypical benign partial epilepsy (ABPE), Landau-Kleffner syndrome (LKS) and epileptic encephalopathy with continuous spike and waves during slow-wave sleep (CSWS). The genetic basis is largely unknown. We detected new heterozygous mutations in GRIN2A in 27 of 359 affected individuals from 2 independent cohorts with IFE (7.5%; P = 4.83 × 10−18, Fishers exact test). Mutations occurred significantly more frequently in the more severe phenotypes, with mutation detection rates ranging from 12/245 (4.9%) in individuals with BECTS to 9/51 (17.6%) in individuals with CSWS (P = 0.009, Cochran-Armitage test for trend). In addition, exon-disrupting microdeletions were found in 3 of 286 individuals (1.0%; P = 0.004, Fishers exact test). These results establish alterations of the gene encoding the NMDA receptor NR2A subunit as a major genetic risk factor for IFE.


NeuroImage | 2004

Evaluation of anatomy based reconstruction for partial volume correction in brain FDG-PET

Kristof Baete; Johan Nuyts; Koen Van Laere; Wim Van Paesschen; Sarah Ceyssens; Liesbet De Ceuninck; Olivier Gheysens; Annemarie Kelles; Jimmy Van den Eynden; Paul Suetens; Patrick Dupont

UNLABELLED FDG-PET contributes to the diagnosis and management of neurological diseases. In some of these diseases, pathological gray matter (GM) areas may have a reduced FDG uptake. Detection of these regions can be difficult and some remain undiscovered using visual assessment. The main reason for this detection problem is the relatively small thickness of GM compared to the spatial resolution of PET, known as the partial volume effect. We have developed an anatomy-based maximum-a-posteriori reconstruction algorithm (A-MAP) which corrects for this effect during the reconstruction using segmented magnetic resonance (MR) data. Monte-Carlo based 3-D brain software phantom simulations were used to investigate the influence of the strength of anatomy-based smoothing in GM, the influence of misaligned MR data, and the effect of local segmentation errors. A human observer study was designed to assess the detection performance of A-MAP versus post-smoothed maximum-likelihood (ML) reconstruction. We demonstrated the applicability of A-MAP using real patient data. The results for A-MAP showed improved recovery values and robustness for local segmentation errors. Misaligned MR data reduced the recovery values towards those obtained by post-smoothed ML, for small registration errors. In the human observer study, detection accuracy of hypometabolic regions was significantly improved using A-MAP, compared to post-smoothed ML (P < 0.004). The patient study confirmed the applicability of A-MAP in clinical practice. CONCLUSION A-MAP is a promising technique for voxel-based partial volume correction of FDG-PET of the human brain.


Current Opinion in Neurology | 2007

The use of SPECT and PET in routine clinical practice in epilepsy.

Wim Van Paesschen; Patrick Dupont; Stefan Sunaert; Karolien Goffin; Koen Van Laere

Purpose of reviewThe aim of this article is to give a subjective review of the usefulness of single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging in clinical practice in epilepsy for 2007. Recent findingsBoth ictal perfusion SPECT and interictal fluorodeoxyglucose PET can provide new information in the presurgical evaluation of intractable partial epilepsy. These functional imaging modalities reflect dynamic seizure-related changes in cerebral cellular functions. Although asymmetry of fluorodeoxyglucose PET metabolism has been useful to localize the epileptic temporal lobe, which tends to be more hypometabolic than the contralateral one, both frontal lobes are more hypometabolic than the epileptic temporal lobe, and may represent a region of ‘surround inhibition’. Due to its low temporal resolution, ictal perfusion SPECT hyperperfusion patterns often contain both the ictal onset zone and propagation pathways. These patterns often have a multilobulated ‘hourglass’ appearance. The largest and most intense hyperperfusion cluster often represents ictal propagation, and does not always need to be resected in order to render a patient seizure free. SummaryOptimized interictal FDG-PET and ictal perfusion SPECT as part of a multimodality imaging platform will be important tools to better understand the neurobiology of epilepsy and to better define the epileptogenic, ictal onset, functional deficit and surround inhibition zones in refractory partial epilepsy.


Seminars in Nuclear Medicine | 2008

Neuronuclear Assessment of Patients With Epilepsy

Karolien Goffin; Stefanie Dedeurwaerdere; Koen Van Laere; Wim Van Paesschen

Epilepsy is a common chronic neurological disorder that is controlled with medication in approximately 70% of cases. When partial seizures are recurrent despite the use of antiepileptic drugs, resection of the epileptogenic cortex may be considered. Nuclear medicine plays an important role in the presurgical assessment of patients with refractory epilepsy. Single-photon emission computed tomography (SPECT) and positron emission tomography (PET) techniques are used to determine the seizure onset zone, which needs to be resected to render a patient seizure free. Correct localization of the ictal onset zone with the use of SPECT or PET is associated with a better surgical outcome. Ictal perfusion SPECT imaging with (99m)Tc-ethyl cysteinate dimer (ECD) or (99m)Tc-hexamethylpropyleneamine oxime (HMPAO) enables one to detect the seizure onset zone in a majority of cases, especially in patients with temporal lobe epilepsy. Interictal SPECT imaging, which is more widely available, is unreliable to determine the ictal onset zone and is usually only used for comparison with ictal SPECT images. Assessment of the ictal onset zone using subtracted ictal and interictal studies, overlayed on structural imaging has proven to be more sensitive and more specific compared with visual assessment. Video-electroencephalography monitoring in combination with ictal SPECT imaging, however, is only available in specialized centers. It is important to inject the perfusion tracer as early as possible after the beginning of a seizure and to be aware of patterns of seizure propagation. Interictal (18)F-fluorodeoxyglucose (FDG)-PET is routinely used to detect brain areas of hypometabolism, which usually encompass, but tend to be larger than, the seizure onset zone. Also, for assessment of FDG-PET, it is advisable to use an automated technique comparing the patients images to a normal database in addition to visual interpretation of the images, since automated techniques have proven to be more accurate. In view of the thickness of the cortical ribbon, which may be below the resolution of the PET camera, posthoc partial volume correction or PET reconstruction incorporating the anatomical information of magnetic resonance imaging (MRI), may be useful for optimal assessment of glucose metabolism. Perfusion SPECT and interictal FDG-PET are able to demonstrate areas of abnormal perfusion and metabolism at a distance from the ictal onset zone, which may be associated with cognitive and psychiatric comorbidities, and may represent the functional deficit zone in epilepsy. Part of the functional deficit zone is a dynamic seizure-related process, which may resolve with cessation of seizures. In recent years, novel PET tracers have been developed to visualize not only glucose metabolism but also a wide variety of specific receptor systems. In patients with epilepsy, changes in the gamma-amino-butyric acid(A) receptor, opioid receptor, 5-HT(1A) serotonin receptor, nicotinic acetylcholine receptor systems, and others have been described. Because these tracers are not widely available and the superiority of studying these receptor systems over glucose metabolism in the presurgical evaluation of patients with refractory epilepsy remains to be proven, their use in clinical practice is limited at the moment. Finally, advances in small animal PET scanning allow the in vivo study of the process of epileptogenesis, starting from an initial brain insult to the development of seizures, in animal models of epilepsy. Potential new therapeutic targets may be discovered using this translational approach.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Defective membrane expression of the Na+-HCO3− cotransporter NBCe1 is associated with familial migraine

Masashi Suzuki; Wim Van Paesschen; Ingeborg Stalmans; Shoko Horita; Hideomi Yamada; Bruno A. Bergmans; Eric Legius; Florence Riant; Yuehong Li; Takashi Sekine; Takashi Igarashi; Ichiro Fujimoto; Katsuhiko Mikoshiba; Mitsunobu Shimadzu; Masaaki Shiohara; Nancy Braverman; Lihadh Al-Gazali; Toshiro Fujita; George Seki

Homozygous mutations in SLC4A4, encoding the electrogenic Na+-HCO3− cotransporter NBCe1, have been known to cause proximal renal tubular acidosis (pRTA) and ocular abnormalities. In this study, we report two sisters with pRTA, ocular abnormalities, and hemiplegic migraine. Genetic analysis ruled out pathological mutations in the known genes for familial hemiplegic migraine, but identified a homozygous 65-bp deletion (Δ65bp) in the C terminus of NBCe1, corresponding to the codon change S982NfsX4. Several heterozygous members of this family also presented glaucoma and migraine with or without aura. Despite the normal electrogenic activity in Xenopus oocytes, the Δ65bp mutant showed almost no transport activity due to a predominant cytosolic retention in mammalian cells. Furthermore, coexpression experiments uncovered a dominant negative effect of the mutant through hetero-oligomer formation with wild-type NBCe1. Among other pRTA pedigrees with different NBCe1 mutations, we identified four additional homozygous patients with migraine. The immunohistological and functional analyses of these mutants demonstrate that the near total loss of NBCe1 activity in astrocytes can cause migraine potentially through dysregulation of synaptic pH.


Epilepsia | 2013

Efficacy and tolerability of adjunctive brivaracetam in adults with uncontrolled partial‐onset seizures: A phase IIb, randomized, controlled trial

Wim Van Paesschen; Edouard Hirsch; Martin E. Johnson; Ursula Falter; Philipp von Rosenstiel

Purpose:  To evaluate the efficacy and tolerability of adjunctive brivaracetam (BRV), a novel high‐affinity synaptic vesicle protein 2A ligand that also displays inhibitory activity at neuronal voltage‐dependent sodium channels, in adult epilepsy patients with uncontrolled partial‐onset seizures.


Epilepsia | 1998

Longitudinal quantitative hippocampal magnetic resonance imaging study of adults with newly diagnosed partial seizures: One-year follow-up results

Wim Van Paesschen; John S. Duncan; John M. Stevens; Alan Connelly

Summary: Purpose: We wished to establish whether hippocampal changes occur in 1 year in adults with newly diagnosed partial seizures and, if so, to identify possible causes and mechanisms.


Epilepsia | 2014

Adjunctive brivaracetam for uncontrolled focal and generalized epilepsies: Results of a phase III, double-blind, randomized, placebo-controlled, flexible-dose trial

Patrick Kwan; Eugen Trinka; Wim Van Paesschen; Ivan Rektor; Martin E. Johnson; Sarah Lu

To evaluate the safety and tolerability of adjunctive brivaracetam (BRV), a high‐affinity synaptic vesicle protein 2A (SV2A) ligand, in adults with uncontrolled epilepsy. Efficacy was also assessed in patients with focal seizures as a secondary objective, and explored by descriptive analysis in patients with generalized seizures.


Epilepsia | 2008

Epilepsy as part of the phenotype associated with ATP1A2 mutations.

Liesbet Deprez; Sarah Weckhuysen; Katelijne Peeters; Tine Deconinck; Kristl G. Claeys; Lieve Claes; Arvid Suls; Tine Van Dyck; André Palmini; Gert Matthijs; Wim Van Paesschen

Purpose: Mutations in the ATP1A2 gene have been described in families with familial hemiplegic migraine (FHM). FHM is a variant of migraine with aura characterized by the occurrence of hemiplegia during the aura. Within several FHM families, some patients also had epileptic seizures. In this study we tested the hypothesis that mutations in ATP1A2 may be common in patients presenting with epilepsy and migraine.

Collaboration


Dive into the Wim Van Paesschen's collaboration.

Top Co-Authors

Avatar

Patrick Dupont

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Karolien Goffin

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Koen Van Laere

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Borbála Hunyadi

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anneleen Vergult

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bart Vanrumste

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Wim De Clercq

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Paul Suetens

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge