Wim Versées
Vrije Universiteit Brussel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wim Versées.
Microbiology and Molecular Biology Reviews | 2011
Natalie Verstraeten; Maarten Fauvart; Wim Versées; Jan Michiels
SUMMARY Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, “It may never again be possible to capture [GTPases] in a family portrait” (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.
Molecular Cell | 2015
Natalie Verstraeten; Wouter Knapen; Cyrielle Kint; Veerle Liebens; Bram Van den Bergh; Liselot Dewachter; Joran Michiels; Qiang Fu; Charlotte C. David; Ana Carolina Fierro; Kathleen Marchal; Jan Beirlant; Wim Versées; Johan Hofkens; Maarten Jansen; Maarten Fauvart; Jan Michiels
Within bacterial populations, a small fraction of persister cells is transiently capable of surviving exposure to lethal doses of antibiotics. As a bet-hedging strategy, persistence levels are determined both by stochastic induction and by environmental stimuli called responsive diversification. Little is known about the mechanisms that link the low frequency of persisters to environmental signals. Our results support a central role for the conserved GTPase Obg in determining persistence in Escherichia coli in response to nutrient starvation. Obg-mediated persistence requires the stringent response alarmone (p)ppGpp and proceeds through transcriptional control of the hokB-sokB type I toxin-antitoxin module. In individual cells, increased Obg levels induce HokB expression, which in turn results in a collapse of the membrane potential, leading to dormancy. Obg also controls persistence in Pseudomonas aeruginosa and thus constitutes a conserved regulator of antibiotic tolerance. Combined, our findings signify an important step toward unraveling shared genetic mechanisms underlying persistence.
Journal of Bacteriology | 2007
Stijn Spaepen; Wim Versées; Dörte Gocke; Martina Pohl; Jan Steyaert; Jozef Vanderleyden
Azospirillum brasilense belongs to the plant growth-promoting rhizobacteria with direct growth promotion through the production of the phytohormone indole-3-acetic acid (IAA). A key gene in the production of IAA, annotated as indole-3-pyruvate decarboxylase (ipdC), has been isolated from A. brasilense, and its regulation was reported previously (A. Vande Broek, P. Gysegom, O. Ona, N. Hendrickx, E. Prinsen, J. Van Impe, and J. Vanderleyden, Mol. Plant-Microbe Interact. 18:311-323, 2005). An ipdC-knockout mutant was found to produce only 10% (wt/vol) of the wild-type IAA production level. In this study, the encoded enzyme is characterized via a biochemical and phylogenetic analysis. Therefore, the recombinant enzyme was expressed and purified via heterologous overexpression in Escherichia coli and subsequent affinity chromatography. The molecular mass of the holoenzyme was determined by size-exclusion chromatography, suggesting a tetrameric structure, which is typical for 2-keto acid decarboxylases. The enzyme shows the highest kcat value for phenylpyruvate. Comparing values for the specificity constant kcat/Km, indole-3-pyruvate is converted 10-fold less efficiently, while no activity could be detected with benzoylformate. The enzyme shows pronounced substrate activation with indole-3-pyruvate and some other aromatic substrates, while for phenylpyruvate it appears to obey classical Michaelis-Menten kinetics. Based on these data, we propose a reclassification of the ipdC gene product of A. brasilense as a phenylpyruvate decarboxylase (EC 4.1.1.43).
Molecular Microbiology | 2010
Wim Versées; Steven De Groeve; Mieke Van Lijsebettens
Post‐transcriptional modifications on transfer RNA (tRNA) molecules occur frequently but their implication on the translational regulation is only recently becoming fully appreciated. Several tRNA molecules in the eukaryotic cytoplasm carry a methoxycarbonylmethyl (mcm) or carbamoylmethyl (ncm) group on their wobble uridine to ensure the efficient and reliable decoding of A‐ or G‐ending codons. Evidence suggests that the six subunits of the conserved Elongator complex are all required for an early step in the synthesis of the mcm and ncm groups in Saccharomyces cerevisiae as well as in Caenorhabditis elegans. In this issue of Molecular Microbiology, Mehlgarten et al. convincingly show that the tRNA‐modifying role of Elongator is also conserved in the plant Arabidopsis thaliana. Moreover, combinations of subunits of the Arabidopsis Elongator complex can structurally and functionally complement deletion mutants in yeast and substitute for the tRNA modification activity. The data suggest that Elongator might be a unique multitasking complex with at least two conserved roles in all eukaryotes, i.e. transcriptional activation via histone acetylation in the nucleus and translational control through tRNA modification in the cytoplasm.
FEBS Journal | 2007
Wim Versées; Stijn Spaepen; Jozef Vanderleyden; Jan Steyaert
Phenylpyruvate decarboxylase (PPDC) of Azospirillum brasilense, involved in the biosynthesis of the plant hormone indole‐3‐acetic acid and the antimicrobial compound phenylacetic acid, is a thiamine diphosphate‐dependent enzyme that catalyses the nonoxidative decarboxylation of indole‐ and phenylpyruvate. Analogous to yeast pyruvate decarboxylases, PPDC is subject to allosteric substrate activation, showing sigmoidal v versus [S] plots. The present paper reports the crystal structure of this enzyme determined at 1.5 Å resolution. The subunit architecture of PPDC is characteristic for other members of the pyruvate oxidase family, with each subunit consisting of three domains with an open α/β topology. An active site loop, bearing the catalytic residues His112 and His113, could not be modelled due to flexibility. The biological tetramer is best described as an asymmetric dimer of dimers. A cysteine residue that has been suggested as the site for regulatory substrate binding in yeast pyruvate decarboxylase is not conserved, requiring a different mechanism for allosteric substrate activation in PPDC. Only minor changes occur in the interactions with the cofactors, thiamine diphosphate and Mg2+, compared to pyruvate decarboxylase. A greater diversity is observed in the substrate binding pocket accounting for the difference in substrate specificity. Moreover, a catalytically important glutamate residue conserved in nearly all decarboxylases is replaced by a leucine in PPDC. The consequences of these differences in terms of the catalytic and regulatory mechanism of PPDC are discussed.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Giambattista Guaitoli; Francesco Raimondi; Bernd K. Gilsbach; Yacob Gómez-Llorente; Egon Deyaert; Fabiana Renzi; Xianting Li; Adam Schaffner; Pravin Kumar Ankush Jagtap; Karsten Boldt; Felix von Zweydorf; Katja Gotthardt; Donald D. Lorimer; Zhenyu Yue; Alex B. Burgin; Nebojsa Janjic; Michael Sattler; Wim Versées; Marius Ueffing; Iban Ubarretxena-Belandia; Arjan Kortholt; Christian Johannes Gloeckner
Significance Leucine-rich repeat kinase 2 (LRRK2) represents a promising drug target for treatment and prevention of Parkinson’s disease (PD), because mutations in LRRK2 are the most common cause of Mendelian forms of the disease. PD-associated LRRK2 variants show decreased GTPase and increased kinase activity. By integrating multiple experimental inputs provided by chemical cross-linking, small-angle X-ray scattering, and a negative-stain EM map, we present, to our knowledge, the first structural model of the full-length LRRK2 dimer. The model reveals a compact folding of the LRRK2 dimer with multiple domain–domain interactions that might be involved in the regulation of LRRK2 enzymatic properties. Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein containing two catalytic domains: a Ras of complex proteins (Roc) G-domain and a kinase domain. Mutations associated with familial and sporadic Parkinson’s disease (PD) have been identified in both catalytic domains, as well as in several of its multiple putative regulatory domains. Several of these mutations have been linked to increased kinase activity. Despite the role of LRRK2 in the pathogenesis of PD, little is known about its overall architecture and how PD-linked mutations alter its function and enzymatic activities. Here, we have modeled the 3D structure of dimeric, full-length LRRK2 by combining domain-based homology models with multiple experimental constraints provided by chemical cross-linking combined with mass spectrometry, negative-stain EM, and small-angle X-ray scattering. Our model reveals dimeric LRRK2 has a compact overall architecture with a tight, multidomain organization. Close contacts between the N-terminal ankyrin and C-terminal WD40 domains, and their proximity—together with the LRR domain—to the kinase domain suggest an intramolecular mechanism for LRRK2 kinase activity regulation. Overall, our studies provide, to our knowledge, the first structural framework for understanding the role of the different domains of full-length LRRK2 in the pathogenesis of PD.
Bioorganic & Medicinal Chemistry | 2008
Annelies Goeminne; Maya Berg; Michael McNaughton; Gunther Bal; Georgiana Surpateanu; Pieter Van der Veken; Stijn De Prol; Wim Versées; Jan Steyaert; Achiel Haemers; Koen Augustyns
A key enzyme within the purine salvage pathway of parasites, nucleoside hydrolase, is proposed as a good target for new antiparasitic drugs. We have developed N-arylmethyl-iminoribitol derivatives as a novel class of inhibitors against a purine specific nucleoside hydrolase from Trypanosoma vivax. Several of our inhibitors exhibited low nanomolar activity, with 1,4-dideoxy-1,4-imino-N-(8-quinolinyl)methyl-d-ribitol (UAMC-00115, K(i) 10.8nM), N-(9-deaza-adenin-9-yl)methyl-1,4-dideoxy-1,4-imino-d-ribitol (K(i) 4.1nM), and N-(9-deazahypoxanthin-9-yl)methyl-1,4-dideoxy-1,4-imino-d-ribitol (K(i) 4.4nM) being the three most active compounds. Docking studies of the most active inhibitors revealed several important interactions with the enzyme. Among these interactions are aromatic stacking of the nucleobase mimic with two Trp-residues, and hydrogen bonds between the hydroxyl groups of the inhibitors and amino acid residues in the active site. During the course of these docking studies we also identified a strong interaction between the Asp40 residue from the enzyme and the inhibitor. This is an interaction which has not previously been considered as being important.
Journal of Biological Chemistry | 2007
Wim Versées; Stijn Spaepen; Martin D. Wood; Finian J. Leeper; Jozef Vanderleyden; Jan Steyaert
Thiamine diphosphate-dependent enzymes are involved in a wide variety of metabolic pathways. The molecular mechanism behind active site communication and substrate activation, observed in some of these enzymes, has since long been an area of debate. Here, we report the crystal structures of a phenylpyruvate decarboxylase in complex with its substrates and a covalent reaction intermediate analogue. These structures reveal the regulatory site and unveil the mechanism of allosteric substrate activation. This signal transduction relies on quaternary structure reorganizations, domain rotations, and a pathway of local conformational changes that are relayed from the regulatory site to the active site. The current findings thus uncover the molecular mechanism by which the binding of a substrate in the regulatory site is linked to the mounting of the catalytic machinery in the active site in this thiamine diphosphate-dependent enzyme.
Journal of Biological Chemistry | 2005
Stefan Loverix; Paul Geerlings; Michael McNaughton; Koen Augustyns; An Vandemeulebroucke; Jan Steyaert; Wim Versées
In enzymatic depurination of nucleosides, the 5′-OH group of the ribose moiety of the substrate is often shown to contribute substantially to catalysis. The purine-specific nucleoside hydrolase from Trypanosoma vivax (TvNH) fixes the 5′-OH group in a gauche,trans orientation about the C4′–C5′ bond, enabling the 5′-oxygen to accept an intramolecular hydrogen bond from the C8-atom of the purine leaving group. High level ab initio quantum chemical calculations indicate that this interaction promotes protonation of the purine at N7. Steady state kinetics comprising engineered substrates confirm that a considerable fraction of the catalytic 5′-OH effect can be attributed to leaving group activation.
Nature Structural & Molecular Biology | 2016
Baptiste Fischer; Kevin Lüthy; Jone Paesmans; Charlotte De Koninck; Ine Maes; Jef Swerts; Sabine Kuenen; Valerie Uytterhoeven; Patrik Verstreken; Wim Versées
Mutations in TBC1D24 cause severe epilepsy and DOORS syndrome, but the molecular mechanisms underlying these pathologies are unresolved. We solved the crystal structure of the TBC domain of the Drosophila ortholog Skywalker, revealing an unanticipated cationic pocket conserved among TBC1D24 homologs. Cocrystallization and biochemistry showed that this pocket binds phosphoinositides phosphorylated at the 4 and 5 positions. The most prevalent patient mutations affect the phosphoinositide-binding pocket and inhibit lipid binding. Using in vivo photobleaching of Skywalker-GFP mutants, including pathogenic mutants, we showed that membrane binding via this pocket restricts Skywalker diffusion in presynaptic terminals. Additionally, the pathogenic mutations cause severe neurological defects in flies, including impaired synaptic-vesicle trafficking and seizures, and these defects are reversed by genetically increasing synaptic PI(4,5)P2 concentrations through synaptojanin mutations. Hence, we discovered that a TBC domain affected by clinical mutations directly binds phosphoinositides through a cationic pocket and that phosphoinositide binding is critical for presynaptic function.