Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wing-Kee Lee is active.

Publication


Featured researches published by Wing-Kee Lee.


Archives of Toxicology | 2013

Cadmium and cellular signaling cascades: interactions between cell death and survival pathways

Frank Thévenod; Wing-Kee Lee

Cellular stress elicited by the toxic metal Cd2+ does not coerce the cell into committing to die from the onset. Rather, detoxification and adaptive processes are triggered concurrently, allowing survival until normal function is restored. With high Cd2+, death pathways predominate. However, if sublethal stress levels affect cells for prolonged periods, as in chronic low Cd2+ exposure, adaptive and survival mechanisms may deregulate, such that tumorigenesis ensues. Hence, death and malignancy are the two ends of a continuum of cellular responses to Cd2+, determined by magnitude and duration of Cd2+ stress. Signaling cascades are the key factors affecting cellular reactions to Cd2+. This review critically surveys recent literature to outline major features of death and survival signaling pathways as well as their activation, interactions and cross talk in cells exposed to Cd2+. Under physiological conditions, receptor activation generates 2nd messengers, which are short-lived and act specifically on effectors through their spatial and temporal dynamics to transiently alter effector activity. Cd2+ recruits physiological 2nd messenger systems, in particular Ca2+ and reactive oxygen species (ROS), which control key Ca2+- and redox-sensitive molecular switches dictating cell function and fate. Severe ROS/Ca2+ signals activate cell death effectors (ceramides, ASK1-JNK/p38, calpains, caspases) and/or cause irreversible damage to vital organelles, such as mitochondria and endoplasmic reticulum (ER), whereas low localized ROS/Ca2+ levels act as 2nd messengers promoting cellular adaptation and survival through signal transduction (ERK1/2, PI3K/Akt-PKB) and transcriptional regulators (Ref1-Nrf2, NF-κB, Wnt, AP-1, bestrophin-3). Other cellular proteins and processes targeted by ROS/Ca2+ (metallothioneins, Bcl-2 proteins, ubiquitin–proteasome system, ER stress-associated unfolded protein response, autophagy, cell cycle) can evoke death or survival. Hence, temporary or permanent disruptions of ROS/Ca2+ induced by Cd2+ play a crucial role in eliciting, modulating and linking downstream cell death and adaptive and survival signaling cascades.


Metal ions in life sciences | 2013

Toxicology of Cadmium and Its Damage to Mammalian Organs

Frank Thévenod; Wing-Kee Lee

The detrimental health effects of cadmium (Cd) were first described in the mid 19th century. As part of industrial developments, increasing usage of Cd has led to widespread contamination of the environment that threatens human health, particularly today. Rather than acute, lethal exposures, the real challenge in the 21st century in a global setting seems to be chronic low Cd exposure (CLCE), mainly from dietary sources. Ubiquity of Cd makes it a serious environmental health problem that needs to be thoroughly assessed because it already affects or will affect large proportions of the worlds population. CLCE is a health problem that affects increasingly organ toxicity, especially nephrotoxicity, without a known threshold, implying that there is currently no safe limit for CLCE. In this chapter, we summarize current knowledge on the sources of Cd in the environment, describe the entry pathways for Cd into mammalian organisms, sum up the major organs targeted by acute or chronic Cd exposure and review the impact of Cd on organ function and human health. We also aim to put early pioneering studies on Cd poisoning into perspective in the context of recent ground-breaking prospective long-term population studies, which link CLCE to leading causes of diseases in modern societies - cancer, diabetes, and cardiovascular diseases, and of state-of-the-art studies detailing cellular and molecular mechanisms of acute and chronic Cd toxicity.


Biochemical Pharmacology | 2008

Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: lessons from in vitro cadmium toxicity studies.

Wing-Kee Lee; Frank Thévenod

Apoptosis is a tightly regulated physiological process, which can be initiated by toxic stimuli, such as cadmium (Cd2+). Cd2+ (10-50 microM) induces a rapid increase in reactive oxygen species (ROS) (> or = 30 min) in a cell line derived from the S1 segment of rat kidney proximal tubule, without any apparent mitochondrial dysfunction. The sphingolipid ceramide is an important second messenger in apoptosis. Short exposure to Cd2+ (3h) causes an increase in ceramides, which occurs downstream of ROS formation, and may interact with cellular components, such as endoplasmic reticulum and mitochondria. Following apoptosis initiation, execution must take place. The classical executioners of apoptosis are caspases, a family of cysteine proteases. However, increasing studies report caspase-independent apoptosis, which questions the essentiality of caspases for apoptosis implementation. With low micromolar Cd2+ concentrations (< 10 microM), caspases are only activated after 24h and not at earlier time points, which supports the notion of caspase-independent apoptosis. Due to increased cytosolic Ca(2+) under pathological conditions, a role for the Ca2+-dependent proteases, calpains, has emerged. Calpain activation by Cd2+ (3-6h) seems to be regulated by ceramide levels, in order to induce apoptosis. Calpain and caspase substrates overlap but yield different fragments, which may explain their diverse downstream targets. Furthermore, calpains and caspases may interact with one another to enhance, as seen by Cd2+, or diminish apoptosis. In this review, we discuss novel roles for ceramides, calpains and caspases as part of Cd2+-induced apoptotic signalling pathways in the kidney proximal tubule and their in vivo relevance to Cd2+-induced nephrotoxicity.


Journal of Biological Chemistry | 2012

Lipocalin-2 (24p3/Neutrophil Gelatinase-associated Lipocalin (NGAL)) Receptor Is Expressed in Distal Nephron and Mediates Protein Endocytosis

Christian Langelueddecke; Eleni Roussa; Robert A. Fenton; Natascha A. Wolff; Wing-Kee Lee; Frank Thévenod

Background: Localization and function of the lipocalin-2/NGAL/24p3 receptor (24p3R) in the kidney are unknown. Results: 24p3R is expressed in apical plasma membranes of the distal nephron and mediates high-affinity protein endocytosis in renal cells. Conclusion: 24p3R contributes to protein endocytosis and nephrotoxicity in distal nephron segments. Significance: This is the first study to investigate localization and function of 24p3R in relevant epithelia. In the kidney, bulk reabsorption of filtered proteins occurs in the proximal tubule via receptor-mediated endocytosis (RME) through the multiligand receptor complex megalin-cubilin. Other mechanisms and nephron sites for RME of proteins are unclear. Recently, the secreted protein 24p3 (lipocalin-2, neutrophil gelatinase-associated lipocalin (NGAL)), which is expressed in the distal nephron, has been identified as a sensitive biomarker of kidney damage. A high-affinity receptor for 24p3 (24p3R) that is involved in endocytotic iron delivery has also been cloned. We investigated the localization of 24p3R in rodent kidney and its role in RME of protein-metal complexes and albumin. Immunostaining of kidney tissue showed expression of 24p3R in apical membranes of distal tubules and collecting ducts, but not of proximal tubule. The differential expression of 24p3R in these nephron segments was confirmed in the respective cell lines. CHO cells transiently transfected with 24p3R or distal tubule cells internalized submicromolar concentrations of fluorescence-coupled proteins transferrin, albumin, or metallothionein (MT) as well as the toxic cadmium-MT (Cd2+7-MT) complex, which caused cell death. Uptake of MT or transferrin and Cd2+7-MT toxicity were prevented by picomolar concentrations of 24p3. An EC50 of 123 ± 50 nm was determined for binding of MT to 24p3R by microscale thermophoresis. Hence, 24p3R binds proteins filtered by the kidney with high affinity and may contribute to RME of proteins, including 24p3, and to Cd2+7-MT toxicity in distal nephron segments.


American Journal of Physiology-renal Physiology | 2009

Organic cation transporters OCT1, 2, and 3 mediate high-affinity transport of the mutagenic vital dye ethidium in the kidney proximal tubule

Wing-Kee Lee; Markus Reichold; Bayram Edemir; Giuliano Ciarimboli; Richard Warth; Hermann Koepsell; Frank Thévenod

The positively charged fluorescent dyes ethidium (Et(+)) and propidium (Pr(2+)) are widely used as DNA and necrosis markers. Et(+) is cytotoxic and mutagenic. The polyspecific organic cation transporters OCT1 (SLC22A1), OCT2 (SLC22A2), and OCT3 (SLC22A3) mediate electrogenic facilitated diffusion of small (< or =500 Da) organic cations with broad specificities. In humans, OCT2 mediates basolateral uptake by kidney proximal tubules (PT), whereas in rodents OCT1/2 are involved. In mouse kidney, perfused Et(+) accumulated predominantly in the S2/S3 segments of the PT, but not Pr(2+). In cells stably overexpressing human OCTs (hOCTs), Et(+) uptake was observed with K(m) values of 0.8 +/- 0.2 microM (hOCT1), 1.7 +/- 0.5 microM (hOCT2), and 2.0 +/- 0.5 microM (hOCT3), whereas Pr(2+) was not transported. Accumulation of Et(+) was inhibited by OCT substrates quinine, 3-methyl-4-phenylpyridinium (MPP(+)), cimetidine, and tetraethylammonium (TEA(+)). For hOCT1 and hOCT2, the IC(50) values for MPP(+), TEA(+), and cimetidine were higher than for inhibition of previously tested transported substrates. For hOCT2, the inhibition of Et(+) uptake by MPP(+) and cimetidine was shown to be competitive. Et(+) also inhibited transport of 0.1 microM [(3)H]MPP(+) by all hOCT isoforms with IC(50) values between 0.4 and 1.3 microM, and the inhibition of hOCT1-mediated uptake of MPP(+) by Et(+) was competitive. In Oct1/2(-/-) mice, Et(+) uptake in the PT was almost abolished. The data demonstrate that Et(+) is taken up avidly by the PT, which is mediated by OCT1 and/or OCT2. Considering the high affinity of OCTs for Et(+) and their strong expression in various organs, strict safety guidelines for Et(+) handling should be reinforced.


Journal of Cellular and Molecular Medicine | 2011

Ferroportin 1 is expressed basolaterally in rat kidney proximal tubule cells and iron excess increases its membrane trafficking

Natascha A. Wolff; Wei Liu; Robert A. Fenton; Wing-Kee Lee; Frank Thévenod; Craig P. Smith

Ferroportin 1 (FPN1) is an iron export protein expressed in liver and duodenum, as well as in reticuloendothelial macrophages. Previously, we have shown that divalent metal transporter 1 (DMT1) is expressed in late endosomes and lysosomes of the kidney proximal tubule (PT), the nephron segment responsible for the majority of solute reabsorption. We suggested that following receptor mediated endocytosis of transferrin filtered by the glomerulus, DMT1 exports iron liberated from transferrin into the cytosol. FPN1 is also expressed in the kidney yet its role remains obscure. As a first step towards determining the role of renal FPN1, we localized FPN1 in the PT. FPN1 was found to be located in association with the basolateral PT membrane and within the cytosolic compartment. FPN1 was not expressed on the apical brush‐border membrane of PT cells. These data support a role for FPN1 in vectorial export of iron out of PT cells. Furthermore, under conditions of iron loading of cultured PT cells, FPN1 was trafficked to the plasma membrane suggesting a coordinated cellular response to export excess iron and limit cellular iron concentrations.


Molecular Pharmaceutics | 2013

Substrate- and cell contact-dependent inhibitor affinity of human organic cation transporter 2: studies with two classical organic cation substrates and the novel substrate cd2+.

Frank Thévenod; Giuliano Ciarimboli; Marcus Leistner; Natascha A. Wolff; Wing-Kee Lee; Irina Schatz; Thorsten Keller; Rouvier Al-Monajjed; Valentin Gorboulev; Hermann Koepsell

Polyspecific organic cation transporter Oct2 from rat (gene Slc22A2) has been previously shown to transport Cs(+). Here we report that human OCT2 (hOCT2) is able to transport Cd(2+) showing substrate saturation with a Michaelis-Menten constant (Km) of 54 ± 5.8 μM. Uptake of Cd(2+) by hOCT2 was inhibited by typical hOCT2 ligands (unlabeled substrates and inhibitors), and the rate of uptake was decreased by a point mutation in a substrate binding domain of hOCT2. Incubation of hOCT2 overexpressing human embryonic kidney 293 cells (HEK-hOCT2-C) or rat renal proximal tubule cells expressing rOct2 (NRK-52E-C) with Cd(2+) resulted in an increased level of apoptosis that was reduced by OCT2 inhibitory ligand cimetidine(+). HEK-hOCT2-C exhibited different functional properties when they were confluent or had been dissociated by removal of Ca(2+) and Mg(2+). Only confluent HEK-hOCT2-C transported Cd(2+), and confluent and dissociated cells exhibited different potencies for inhibition of uptake of 1-methyl-4-phenylpyridinium(+) (MPP(+)) by Cd(2+), MPP(+), tetraethylammonium(+), cimetidine(+), and corticosterone. In confluent HEK-hOCT2-C, largely different inhibitor potencies were obtained upon comparison of inhibition of Cd(2+) uptake, 4-[4-(dimethylamino)styryl]-N-methylpyridinium(+) (ASP(+)) uptake, and MPP(+) uptake using substrate concentrations far below the respective Km values. Employing a point mutation in the previously identified substrate binding site of rat Oct1 produced evidence that short distance allosteric effects between binding sites for substrates and inhibitors are involved in substrate-dependent inhibitor potency. Substrate-dependent inhibitor affinity is probably a common property of OCTs. To predict interactions between drugs that are transported by OCTs and inhibitory drugs, it is necessary to employ the specific transported drug rather than a model substrate for in vitro measurements.


Current Drug Metabolism | 2009

Organic Cation Transporters: Physiology, Toxicology and Special Focus on Ethidium as a Novel Substrate

Wing-Kee Lee; Natascha A. Wolff; Frank Thévenod

The polyspecific organic cation transporters OCT1 (SLC22A1), OCT2 (SLC22A2) and OCT3 (SLC22A3) mediate facilitated and bidirectional diffusion of small (< or = 500Da) organic cations with broad specificities for endogenous substrates such as choline, acetylcholine and monoamine neurotransmitters, as well as a variety of xenobiotics. Importantly, besides a wide range of clinically used drugs, these also include several toxins like the neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) and herbicide paraquat. OCT2-OCT-3 display differential tissue distribution: OCT1 is predominantly found in liver of humans, and liver and kidney in rodents; OCT2 is most strongly expressed in both human and rodent kidney, whereas is OCT3 primarily expressed in placenta, but also more widely detected in various tissues, including brain and lung. The physiological roles of OCTs as transporters for biogenic amines or acetylcholine in these tissues are still debated, in contrast to their involvement in providing access pathways for harmful/toxic cationic substrates into the body and particular tissues. This review highlights a novel role of human and rodent OCTs as carriers of the toxic fluorescent dye ethidium, as opposed to the less harmful related phenanthridine compound propidium, which is not transported. Additional uptake and efflux pathways for ethidium in pro- and eukaryotes are discussed. OCT-mediated pathways may determine major entry routes for ethidium into the body where toxicity via specific mechanisms may develop in tissues expressing OCTs. Considering the high affinity of OCTs for ethidium (K(m) = 1-2 microM) and their strong expression in various organs, strict safety guidelines for the handling of ethidium should be reinforced.


Toxicology and Applied Pharmacology | 2008

Role of ARF6 in internalization of metal-binding proteins, metallothionein and transferrin, and cadmium-metallothionein toxicity in kidney proximal tubule cells

Natascha A. Wolff; Wing-Kee Lee; Marouan Abouhamed; Frank Thévenod

Filtered metal-protein complexes, such as cadmium-metallothionein-1 (CdMT-1) or transferrin (Tf) are apically endocytosed partly via megalin/cubilin by kidney proximal tubule (PT) cells where CdMT-1 internalization causes apoptosis. Small GTPase ARF (ADP-ribosylation factor) proteins regulate endocytosis and vesicular trafficking. We investigated roles of ARF6, which has been shown to be involved in internalization of ligands and endocytic trafficking in PT cells, following MT-1/CdMT-1 and Tf uptake by PT cells. WKPT-0293 Cl.2 cells derived from rat PT S1 segment were transfected with hemagglutinin-tagged wild-type (ARF6-WT) or dominant negative (ARF6-T27N) forms of ARF6. Using immunofluorescence, endogenous ARF6 was associated with the plasma membrane (PM) as well as juxtanuclear and co-localized with Rab5a and Rab11 involved in early and recycling endosomal trafficking. Immunofluorescence staining of megalin showed reduced surface labelling in ARF6 dominant negative (ARF6-DN) cells. Intracellular Alexa Fluor 546-conjugated MT-1 uptake was reduced in ARF6-DN cells and CdMT-1 (14.8 microM for 24 h) toxicity was significantly attenuated from 27.3+/-3.9% in ARF6-WT to 11.1+/-4.0% in ARF6-DN cells (n=6, P<0.02). Moreover, reduced Alexa Fluor 546-conjugated Tf uptake was observed in ARF-DN cells (75.0+/-4.6% versus 3.9+/-3.9% of ARF6-WT cells, n=3, P<0.01) and/or remained near the PM (89.3+/-5. 6% versus 45.2+/-14.3% of ARF6-WT cells, n=3, P<0.05). In conclusion, the data support roles for ARF6 in receptor-mediated endocytosis and trafficking of MT-1/Tf to endosomes/lysosomes and CdMT-1 toxicity of PT cells.


American Journal of Physiology-renal Physiology | 2010

Cadmium-induced DNA damage triggers G2/M arrest via chk1/2 and cdc2 in p53-deficient kidney proximal tubule cells

Ulrich Bork; Wing-Kee Lee; Anna Kuchler; Thomas Dittmar; Frank Thévenod

Carcinogenesis is a multistep process that is frequently associated with p53 inactivation. The class 1 carcinogen cadmium (Cd(2+)) causes renal cancer and is known to inactivate p53. G(2)/mitosis (M) arrest contributes to stabilization of p53-deficient mutated cells, but its role and regulation in Cd(2+)-exposed p53-deficient renal cells are unknown. In p53-inactivated kidney proximal tubule (PT) cells, comet assay experiments showed that Cd(2+) (50-100 microM) induced DNA damage within 1-6 h. This was associated with peak formation of reactive oxygen species (ROS) at 1-3 h, measured with dihydrorhodamine 123, and G(2)/M cell cycle arrest at 6 h, which were abolished by the antioxidant alpha-tocopherol (100 microM). Cd(2+)-induced G(2)/M arrest was enhanced approximately twofold on release from cell synchronization (double thymidine block or nocodazole) and resulted in approximately twofold increase of apoptosis, indicating that G(2)/M arrest mirrors DNA damage and toxicity. The Chk1/2 kinase inhibitor UCN-01 (0.3 microM), which relieves G(2)/M transition block, abolished Cd(2+)-induced G(2) arrest and increased apoptosis. This was accompanied by prevention of Cd(2+)-induced cyclin-dependent kinase cdc2 phosphorylation at tyrosine 15, as shown by immunofluorescence microscopy and immunoblotting. The data indicate that in p53-inactivated PT cells Cd(2+)-induced ROS formation and DNA damage trigger signaling of checkpoint activating kinases ataxia telangiectasia-mutated kinase (ATM) and ataxia telangiectasia and Rad3-related kinase (ATR) to cause G(2)/M arrest. This may promote survival of premalignant PT cells and Cd(2+) carcinogenesis.

Collaboration


Dive into the Wing-Kee Lee's collaboration.

Top Co-Authors

Avatar

Frank Thévenod

Witten/Herdecke University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Dittmar

Witten/Herdecke University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prabir K. Chakraborty

Saha Institute of Nuclear Physics

View shared research outputs
Top Co-Authors

Avatar

Eleni Roussa

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Ella A. Naumova

Witten/Herdecke University

View shared research outputs
Top Co-Authors

Avatar

Philipp Al Khatib

Witten/Herdecke University

View shared research outputs
Researchain Logo
Decentralizing Knowledge