Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wing-Kin Syn is active.

Publication


Featured researches published by Wing-Kin Syn.


International Journal of Cancer | 2011

Non‐alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis

Judith Ertle; Alexander Dechêne; Jan-Peter Sowa; Volker Penndorf; Kerstin Herzer; Gernot M. Kaiser; Jf Schlaak; Guido Gerken; Wing-Kin Syn; Ali Canbay

Non‐alcoholic fatty liver disease (NAFLD) is the most common liver disease in developed countries, and accumulating evidence suggests it as the hepatic manifestation of the metabolic syndrome (MS). Although the published prevalence of hepatocellular carcinoma (HCC) is low in NAFLD/NASH patients, most of these data have been derived from areas endemic for viral hepatitis. We recruited 162 adults with HCC between February 2007 and March 2008, investigated the underlying etiologies and determined the prevalence of the MS and related features within each group. Patients with NAFLD/NASH‐associated HCC exhibited a higher prevalence of metabolic features (Type 2 diabetes mellitus, hypertension, dyslipidemia, coronary artery disease) compared to non‐NAFLD/NASH‐HCC. Intriguingly, a significant number (41.7%; p < 0.005) of individuals with NAFLD/NASH‐HCC had no evidence of cirrhosis. Patients with alcohol‐induced liver disease also displayed many features (14/19, 73.7%) of the MS, although, in contrast to NAFLD/NASH‐HCC, alcohol‐associated HCC was highly associated with cirrhosis (95.0%; p = 0.064). NAFLD/NASH as the hepatic entity of the MS may itself pose a risk factor for HCC, even in the absence of cirrhosis. The MS may also promote development of HCC among those with alcoholic liver disease. Increased awareness of liver manifestations in the MS may instigate early interventions against developing HCC.


Journal of Clinical Investigation | 2008

Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans

Alessia Omenetti; Alessandro Porrello; Youngmi Jung; Liu Yang; Yury Popov; Steve S. Choi; Rafal P. Witek; Gianfranco Alpini; J Venter; Hendrika M. A. VanDongen; Wing-Kin Syn; Gianluca Svegliati Baroni; Antonio Benedetti; Detlef Schuppan; Anna Mae Diehl

Epithelial-mesenchymal transitions (EMTs) play an important role in tissue construction during embryogenesis, and evidence suggests that this process may also help to remodel some adult tissues after injury. Activation of the hedgehog (Hh) signaling pathway regulates EMT during development. This pathway is also induced by chronic biliary injury, a condition in which EMT has been suggested to have a role. We evaluated the hypothesis that Hh signaling promotes EMT in adult bile ductular cells (cholangiocytes). In liver sections from patients with chronic biliary injury and in primary cholangiocytes isolated from rats that had undergone bile duct ligation (BDL), an experimental model of biliary fibrosis, EMT was localized to cholangiocytes with Hh pathway activity. Relief of ductal obstruction in BDL rats reduced Hh pathway activity, EMT, and biliary fibrosis. In mouse cholangiocytes, coculture with myofibroblastic hepatic stellate cells, a source of soluble Hh ligands, promoted EMT and cell migration. Addition of Hh-neutralizing antibodies to cocultures blocked these effects. Finally, we found that EMT responses to BDL were enhanced in patched-deficient mice, which display excessive activation of the Hh pathway. Together, these data suggest that activation of Hh signaling promotes EMT and contributes to the evolution of biliary fibrosis during chronic cholestasis.


Hepatology | 2014

Extrahepatic complications of nonalcoholic fatty liver disease

Matthew J. Armstrong; Leon A. Adams; Ali Canbay; Wing-Kin Syn

Nonalcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease, and is strongly associated with the metabolic syndrome. In the last decade, it has become apparent that the clinical burden of NAFLD is not restricted to liver‐related morbidity or mortality, and the majority of deaths in NAFLD patients are related to cardiovascular disease (CVD) and cancer. These findings have fuelled concerns that NAFLD may be a new, and added risk factor for extrahepatic diseases such as CVD, chronic kidney disease (CKD), colorectal cancer, endocrinopathies (including type 2 diabetes mellitus [T2DM] and thyroid dysfunction), and osteoporosis. In this review we critically appraise key studies on NAFLD‐associated extrahepatic disease. There was marked heterogeneity between studies in study design (cross‐sectional versus prospective; sample size; presence/absence of well‐defined controls), population (ethnic diversity; community‐based versus hospital‐based cohorts), and method of NAFLD diagnosis (liver enzymes versus imaging versus biopsy). Taking this into account, the cumulative evidence to date suggests that individuals with NAFLD (specifically, nonalcoholic steatohepatitis) harbor an increased and independent risk of developing CVD, T2DM, CKD, and colorectal neoplasms. We propose future studies are necessary to better understand these risks, and suggest an example of a screening strategy. (Hepatology 2014;59:1174–1197)


American Journal of Physiology-gastrointestinal and Liver Physiology | 2009

Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis

Steve S. Choi; Alessia Omenetti; Rafal P. Witek; Cynthia A. Moylan; Wing-Kin Syn; Youngmi Jung; Liu Yang; Debra Sudan; Jason K. Sicklick; Gregory A. Michelotti; Marcos Rojkind; Anna Mae Diehl

Myofibroblastic hepatic stellate cells (MF-HSC) are derived from quiescent hepatic stellate cells (Q-HSC). Q-HSC express certain epithelial cell markers and have been reported to form junctional complexes similar to epithelial cells. We have shown that Hedgehog (Hh) signaling plays a key role in HSC growth. Because Hh ligands regulate epithelial-to-mesenchymal transition (EMT), we determined whether Q-HSC express EMT markers and then assessed whether these markers change as Q-HSC transition into MF-HSC and whether the process is modulated by Hh signaling. Q-HSC were isolated from healthy livers and cultured to promote myofibroblastic transition. Changes in mRNA and protein expression of epithelial and mesenchymal markers, Hh ligands, and target genes were monitored in HSC treated with and without cyclopamine (an Hh inhibitor). Studies were repeated in primary human HSC and clonally derived HSC from a cirrhotic rat. Q-HSC activation in vitro (culture) and in vivo (CCl(4)-induced cirrhosis) resulted in decreased expression of Hh-interacting protein (Hhip, an Hh antagonist), the EMT inhibitors bone morphogenic protein (BMP-7) and inhibitor of differentiation (Id2), the adherens junction component E-cadherin, and epithelial keratins 7 and 19 and increased expression of Gli2 (an Hh target gene) and mesenchymal markers, including the mesenchyme-associated transcription factors Lhx2 and Msx2, the myofibroblast marker alpha-smooth muscle actin, and matrix molecules such as collagen. Cyclopamine reverted myofibroblastic transition, reducing mesenchymal gene expression while increasing epithelial markers in rodent and human HSC. We conclude that Hh signaling plays a key role in transition of Q-HSC into MF-HSC. Our findings suggest that Q-HSC are capable of transitioning between epithelial and mesenchymal fates.


Hepatology | 2009

Pan‐caspase inhibitor VX‐166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis

Rafal P. Witek; W. Carl Stone; F. Gamze Karaca; Wing-Kin Syn; Thiago A. Pereira; Kolade M. Agboola; Alessia Omenetti; Youngmi Jung; Vanessa Teaberry; Steve S. Choi; Cynthia D. Guy; John Pollard; Peter Charlton; Anna Mae Diehl

Nonalcoholic fatty liver disease (NAFLD) is a potentially progressive liver disease that culminates in cirrhosis. Cirrhosis occurs more often in individuals with nonalcoholic steatohepatitis (NASH) than in those with steatosis (nonalcoholic fatty liver [NAFL]). The difference between NAFL and NASH is the extent of hepatocyte apoptosis, which is more extensive in NASH. Because phagocytosis of apoptotic cells activates hepatic stellate cells (HSCs), we examined the hypothesis that a pan‐caspase inhibitor, VX‐166, would reduce progression of fibrosis in a mouse model of NASH. Male db/db mice were fed methionine/choline‐deficient (MCD) diets to induce NASH and liver fibrosis. Mice were gavaged once daily with either the pan‐caspase inhibitor VX‐166 (6 mg/kg/d; Vertex, Abingdon, UK) or vehicle only and sacrificed at 4 or 8 weeks. Treatment with an MCD diet increased alanine aminotransferase (ALT), caspase‐3 activity, terminal deoxynucleotidyl transferase–mediated dUTP nick‐end labeling (TUNEL)‐positive cells, NASH, and fibrosis. Treatment of MCD‐fed mice with VX‐166 decreased active caspase‐3, TUNEL‐positive cells, and triglyceride content (P < 0.05). However, ALT levels were similar in VX‐166–treated mice and vehicle‐treated controls. Histological findings also confirmed that both groups had comparable liver injury (NAFLD activity score ≥6). Nevertheless, VX‐166–treated MCD‐fed mice demonstrated decreased α‐smooth muscle actin expression (4 weeks, P < 0.05; 8 weeks, P < 0.005) and had reduced hepatic levels of collagen 1α1 messenger RNA (8 weeks, P < 0.05). Hydroxyproline content and Sirius red staining of VX‐166–treated livers confirmed decreases in fibrosis. Conclusion: Inhibiting hepatic apoptosis suppresses the development of fibrosis in mice with NASH. Beneficial effects on liver fibrosis were associated with reductions in hepatic steatosis, but occurred without obvious improvement in liver injury. These findings are consistent with evidence that apoptosis triggers HSC activation and liver fibrosis and suggest that caspase inhibitors may be useful as an antifibrotic NASH therapy. (HEPATOLOGY 2009.)


Hepatology | 2010

Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease

Wing-Kin Syn; Ye Htun Oo; Thiago A. Pereira; Gamze Karaca; Youngmi Jung; Alessia Omenetti; Rafal P. Witek; Steve S. Choi; Cynthia D. Guy; Caitlin M. Fearing; Vanessa Teaberry; Fausto E.L. Pereira; David H. Adams; Anna Mae Diehl

Liver inflammation is greater in nonalcoholic steatohepatitis (NASH) than steatosis, suggesting that immune responses contribute to nonalcoholic fatty liver disease (NAFLD) progression. Livers normally contain many natural killer T (NKT) cells that produce factors that modulate inflammatory and fibrogenic responses. Such cells are relatively depleted in steatosis, but their status in more advanced NAFLD is uncertain. We hypothesized that NKT cells accumulate and promote fibrosis progression in NASH. We aimed to determine if livers become enriched with NKT cells during NASH‐related fibrosis; identify responsible mechanisms; and assess if NKT cells stimulate fibrogenesis. NKT cells were analyzed in wildtype mice and Patched‐deficient (Ptc+/−) mice with an overly active Hedgehog (Hh) pathway, before and after feeding methionine choline‐deficient (MCD) diets to induce NASH‐related fibrosis. Effects of NKT cell‐derived factors on hepatic stellate cells (HSC) were examined and fibrogenesis was evaluated in CD1d‐deficient mice that lack NKT cells. NKT cells were quantified in human cirrhotic and nondiseased livers. During NASH‐related fibrogenesis in wildtype mice, Hh pathway activation occurred, leading to induction of factors that promoted NKT cell recruitment, retention, and viability, plus liver enrichment with NKT cells. Ptc+/− mice accumulated more NKT cells and developed worse liver fibrosis; CD1d‐deficient mice that lack NKT cells were protected from fibrosis. NKT cell‐conditioned medium stimulated HSC to become myofibroblastic. Liver explants were 2‐fold enriched with NKT cells in patients with non‐NASH cirrhosis, and 4‐fold enriched in patients with NASH cirrhosis. Conclusion: Hh pathway activation leads to hepatic enrichment with NKT cells that contribute to fibrosis progression in NASH. (HEPATOLOGY 2010;)


Journal of Clinical Investigation | 2013

Smoothened is a master regulator of adult liver repair

Gregory A. Michelotti; Guanhua Xie; Marzena Swiderska; Steve S. Choi; Gamze Karaca; Leandi Krüger; Richard T. Premont; Liu Yang; Wing-Kin Syn; Daniel Metzger; Anna Mae Diehl

When regenerative processes cannot keep pace with cell death, functional epithelia are replaced by scar. Scarring is characterized by both excessive accumulation of fibrous matrix and persistent outgrowth of cell types that accumulate transiently during successful wound healing, including myofibroblasts (MFs) and progenitors. This suggests that signaling that normally directs these cells to repair injured epithelia is deregulated. To evaluate this possibility, we examined liver repair during different types of liver injury after Smoothened (SMO), an obligate intermediate in the Hedgehog (Hh) signaling pathway, was conditionally deleted in cells expressing the MF-associated gene, αSMA. Surprisingly, blocking canonical Hh signaling in MFs not only inhibited liver fibrosis but also prevented accumulation of liver progenitors. Hh-sensitive, hepatic stellate cells (HSCs) were identified as the source of both MFs and progenitors by lineage-tracing studies in 3 other strains of mice, coupled with analysis of highly pure HSC preparations using flow cytometry, immunofluorescence confocal microscopy, RT-PCR, and in situ hybridization. The results identify SMO as a master regulator of hepatic epithelial regeneration based on its ability to promote mesenchymal-to-epithelial transitions in a subpopulation of HSC-derived MFs with features of multipotent progenitors.


Gut | 2012

NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease

Wing-Kin Syn; Kolade M. Agboola; Marzena Swiderska; Gregory A. Michelotti; Evaggelia Liaskou; Herbert Pang; Guanhua Xie; George Philips; Isaac S. Chan; Gamze Karaca; Thiago A. Pereira; Yuping Chen; Zhiyong Mi; Paul C. Kuo; Steve S. Choi; Cynthia D. Guy; Manal F. Abdelmalek; Anna Mae Diehl

Objective Immune responses are important in dictating non-alcoholic steatohepatitis (NASH) outcome. We previously reported that upregulation of hedgehog (Hh) and osteopontin (OPN) occurs in NASH, that Hh-regulated accumulation of natural killer T (NKT) cells promotes hepatic stellate cell (HSC) activation, and that cirrhotic livers harbour large numbers of NKT cells. Design The hypothesis that activated NKT cells drive fibrogenesis during NASH was evaluated by assessing if NKT depletion protects against NASH fibrosis; identifying the NKT-associated fibrogenic factors; and correlating plasma levels of the NKT cell-associated factor OPN with fibrosis severity in mice and humans. Results When fed methionine-choline-deficient (MCD) diets for 8 weeks, wild type (WT) mice exhibited Hh pathway activation, enhanced OPN expression, and NASH-fibrosis. Ja18‒/‒ and CD1d‒/‒ mice which lack NKT cells had significantly attenuated Hh and OPN expression and dramatically less fibrosis. Liver mononuclear cells (LMNCs) from MCD diet fed WT mice contained activated NKT cells, generated Hh and OPN, and stimulated HSCs to become myofibroblasts; neutralising these factors abrogated the fibrogenic actions of WT LMNCs. LMNCs from NKT-cell-deficient mice were deficient in fibrogenic factors, failing to activate collagen gene expression in HSCs. Human NASH livers with advanced fibrosis contained more OPN and Hh protein than those with early fibrosis. Plasma levels of OPN mirrored hepatic OPN expression and correlated with fibrosis severity. Conclusion Hepatic NKT cells drive production of OPN and Hh ligands that promote fibrogenesis during NASH. Associated increases in plasma levels of OPN may provide a biomarker of NASH fibrosis.


Hepatology | 2013

Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics

Evaggelia Liaskou; Henning W. Zimmermann; Ka-Kit Li; Ye Htun Oo; Shankar Suresh; Zania Stamataki; Omar S. Qureshi; Patricia F. Lalor; Jean Shaw; Wing-Kin Syn; Stuart M. Curbishley; David H. Adams

Liver fibrosis is a wound healing response to chronic liver injury and inflammation in which macrophages and infiltrating monocytes participate in both the development and resolution phase. In humans, three monocyte subsets have been identified: the classical CD14++CD16−, intermediate CD14++CD16+, and nonclassical CD14+CD16++ monocytes. We studied the phenotype and function of these monocyte subsets in peripheral blood and liver tissue from patients with chronic inflammatory and fibrotic liver diseases. The frequency of intrahepatic monocytes increased in disease compared with control liver tissue, and in both nondiseased and diseased livers there was a higher frequency of CD14++CD16+ cells with blood. Our data suggest two nonexclusive mechanisms of CD14++CD16+ accumulation in the inflamed liver: (1) recruitment from blood, because more than twice as many CD14++CD16+ monocytes underwent transendothelial migration through hepatic endothelial cells compared with CD14++CD16− cells; and (2) local differentiation from CD14++CD16− classical monocytes in response to transforming growth factor β and interleukin (IL)‐10. Intrahepatic CD14++CD16+ cells expressed both macrophage and dendritic cell markers but showed high levels of phagocytic activity, antigen presentation, and T cell proliferation and secreted proinflammatory (tumor necrosis factor α, IL‐6, IL‐8, IL‐1β) and profibrogenic cytokines (IL‐13), chemokines (CCL1, CCL2, CCL3, CCL5), and growth factors (granulocyte colony‐stimulating factor and granulocyte‐macrophage colony‐stimulating factor), consistent with a role in the wound healing response. Conclusion: Intermediate CD14++CD16+ monocytes preferentially accumulate in chronically inflamed human liver as a consequence of enhanced recruitment from blood and local differentiation from classical CD14++CD16− monocytes. Their phagocytic potential and ability to secrete inflammatory and profibrogenic cytokines suggests they play an important role in hepatic fibrogenesis. (HEPATOLOGY 2013)


Hepatology | 2010

HEDGEHOG SIGNALING IS CRITICAL FOR NORMAL LIVER REGENERATION AFTER PARTIAL HEPATECTOMY IN MICE

Begoña Ochoa; Wing-Kin Syn; Igotz Delgado; Gamze Karaca; Youngmi Jung; Jiangbo Wang; Ana M. Zubiaga; Olatz Fresnedo; Alessia Omenetti; Marzena Zdanowicz; Steve S. Choi; Anna Mae Diehl

Distinct mechanisms are believed to regulate growth of the liver during fetal development and after injury in adults, because the former relies on progenitors and the latter generally involves replication of mature hepatocytes. However, chronic liver injury in adults increases production of Hedgehog (Hh) ligands, developmental morphogens that control progenitor cell fate and orchestrate various aspects of tissue construction during embryogenesis. This raises the possibility that similar Hh‐dependent mechanisms also might regulate adult liver regeneration. The current analysis of murine liver regeneration after 70% partial hepatectomy (PH), an established model of adult liver regeneration, demonstrated that PH induced production of Hh ligands and activated Hh signaling in liver cells. Treatment with a specific Hh signaling inhibitor interfered with several key components of normal liver regeneration, significantly inhibiting progenitor responses, matrix remodeling, proliferation of hepatocytes and ductular cells, and restoration of liver mass. These global inhibitory effects on liver regeneration dramatically reduced survival after PH. Conclusion: Mechanisms that mediate liver organogenesis, such as Hh pathway activation, are retained and promote reconstruction of adult livers after injury. Hepatology 2010

Collaboration


Dive into the Wing-Kin Syn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Canbay

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youngmi Jung

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason D. Coombes

Foundation for Liver Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge