Wing-Yiu Choy
University of Western Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wing-Yiu Choy.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Peter M. Hwang; Wing-Yiu Choy; Eileen I. Lo; Lu Chen; Julie D. Forman-Kay; Christian R. H. Raetz; Gilbert G. Privé; Russell E. Bishop; Lewis E. Kay
The bacterial outer membrane enzyme PagP transfers a palmitate chain from a phospholipid to lipid A. In a number of pathogenic Gram-negative bacteria, PagP confers resistance to certain cationic antimicrobial peptides produced during the host innate immune response. The global fold of Escherichia coli PagP was determined in both dodecylphosphocholine and n-octyl-β-d-glucoside detergent micelles using solution NMR spectroscopy. PagP consists of an eight-stranded anti-parallel β-barrel preceded by an amphipathic α helix. The β-barrel is well defined, whereas NMR relaxation measurements reveal considerable mobility in the loops connecting individual β-strands. Three amino acid residues critical for enzymatic activity localize to extracellular loops near the membrane interface, positioning them optimally to interact with the polar headgroups of lipid A. Hence, the active site of PagP is situated on the outer surface of the outer membrane. Because the phospholipids that donate palmitate in the enzymatic reaction are normally found only in the inner leaflet of the outer membrane, PagP activity may depend on the aberrant migration of phospholipids into the outer leaflet. This finding is consistent with an emerging paradigm for outer membrane enzymes in providing an adaptive response toward disturbances in the outer membrane.
Nature Structural & Molecular Biology | 2007
Jennifer M. R. Baker; Rhea Hudson; Voula Kanelis; Wing-Yiu Choy; Patrick H. Thibodeau; Philip J. Thomas; Julie D. Forman-Kay
The regulatory (R) region of the cystic fibrosis transmembrane conductance regulator (CFTR) is intrinsically disordered and must be phosphorylated at multiple sites for full CFTR channel activity, with no one specific phosphorylation site required. In addition, nucleotide binding and hydrolysis at the nucleotide-binding domains (NBDs) of CFTR are required for channel gating. We report NMR studies in the absence and presence of NBD1 that provide structural details for the isolated R region and its interaction with NBD1 at residue-level resolution. Several sites in the R region with measured fractional helical propensity mediate interactions with NBD1. Phosphorylation reduces the helicity of many R-region sites and reduces their NBD1 interactions. This evidence for a dynamic complex with NBD1 that transiently engages different sites of the R region suggests a structural explanation for the dependence of CFTR activity on multiple PKA phosphorylation sites.
Journal of Chemical Theory and Computation | 2012
Elio A. Cino; Wing-Yiu Choy; Mikko Karttunen
We have compared molecular dynamics (MD) simulations of a β-hairpin forming peptide derived from the protein Nrf2 with 10 biomolecular force fields using trajectories of at least 1 μs. The total simulation time was 37.2 μs. Previous studies have shown that different force fields, water models, simulation methods, and parameters can affect simulation outcomes. The MD simulations were done in explicit solvent with a 16-mer Nrf2 β-hairpin forming peptide using Amber ff99SB-ILDN, Amber ff99SB*-ILDN, Amber ff99SB, Amber ff99SB*, Amber ff03, Amber ff03*, GROMOS96 43a1p, GROMOS96 53a6, CHARMM27, and OPLS-AA/L force fields. The effects of charge-groups, terminal capping, and phosphorylation on the peptide folding were also examined. Despite using identical starting structures and simulation parameters, we observed clear differences among the various force fields and even between replicates using the same force field. Our simulations show that the uncapped peptide folds into a native-like β-hairpin structure at 310 K when Amber ff99SB-ILDN, Amber ff99SB*-ILDN, Amber ff99SB, Amber ff99SB*, Amber ff03, Amber ff03*, GROMOS96 43a1p, or GROMOS96 53a6 were used. The CHARMM27 simulations were able to form native hairpins in some of the elevated temperature simulations, while the OPLS-AA/L simulations did not yield native hairpin structures at any temperatures tested. Simulations that used charge-groups or peptide capping groups were not largely different from their uncapped counterparts with single atom charge-groups. On the other hand, phosphorylation of the threonine residue located at the β-turn significantly affected the hairpin formation. To our knowledge, this is the first study comparing such a large set of force fields with respect to β-hairpin folding. Such a comprehensive comparison will offer useful guidance to others conducting similar types of simulations.
Bioinformatics | 2013
Mickael Krzeminski; Joseph A. Marsh; Chris Neale; Wing-Yiu Choy; Julie D. Forman-Kay
UNLABELLED ENSEMBLE is a computational approach for determining a set of conformations that represents the structural ensemble of a disordered protein based on input experimental data. The disordered protein can be an unfolded or intrinsically disordered state. Here, we introduce the latest version of the program, which has been enhanced to facilitate its general release and includes an intuitive user interface, as well as new approaches to treat data and analyse results. AVAILABILITY AND IMPLEMENTATION ENSEMBLE is a program implemented in C and embedded in a Perl wrapper. It is supported on main Linux distributions. Source codes and installation files, including a detailed example, can be freely downloaded at http://abragam.med.utoronto.ca/∼JFKlab.
PLOS ONE | 2012
Elio A. Cino; Mikko Karttunen; Wing-Yiu Choy
Inside cells, the concentration of macromolecules can reach up to 400 g/L. In such crowded environments, proteins are expected to behave differently than in vitro. It has been shown that the stability and the folding rate of a globular protein can be altered by the excluded volume effect produced by a high density of macromolecules. However, macromolecular crowding effects on intrinsically disordered proteins (IDPs) are less explored. These proteins can be extremely dynamic and potentially sample a wide ensemble of conformations under non-denaturing conditions. The dynamic properties of IDPs are intimately related to the timescale of conformational exchange within the ensemble, which govern target recognition and how these proteins function. In this work, we investigated the macromolecular crowding effects on the dynamics of several IDPs by measuring the NMR spin relaxation parameters of three disordered proteins (ProTα, TC1, and α-synuclein) with different extents of residual structures. To aid the interpretation of experimental results, we also performed an MD simulation of ProTα. Based on the MD analysis, a simple model to correlate the observed changes in relaxation rates to the alteration in protein motions under crowding conditions was proposed. Our results show that 1) IDPs remain at least partially disordered despite the presence of high concentration of other macromolecules, 2) the crowded environment has differential effects on the conformational propensity of distinct regions of an IDP, which may lead to selective stabilization of certain target-binding motifs, and 3) the segmental motions of IDPs on the nanosecond timescale are retained under crowded conditions. These findings strongly suggest that IDPs function as dynamic structural ensembles in cellular environments.
Analytical Chemistry | 2009
Jingxi Pan; Kun Xu; Xiaoda Yang; Wing-Yiu Choy; Lars Konermann
Protein-metal complexes may be transferred from solution into the gas phase by electrospray ionization (ESI), such that they can be directly analyzed by mass spectrometry (MS). In principle, therefore, ESI-MS represents a simple and elegant approach for gaining insights into the binding stoichiometry and affinity of these assemblies. Unfortunately, the formation of nonspecific metal adducts during ESI can be a severe problem, often leading to binding levels that are dramatically higher than those in bulk solution. Focusing on several calcium binding proteins as test systems, this work explores the suitability of different salts to serve as metal source. Despite their widespread use in previous ESI-MS studies, calcium chloride and acetate induce extensive nonspecific adduction. In contrast, much lower levels of artifactual metal binding are observed in the presence of calcium tartrate. In the case of high and intermediate affinity proteins, the resulting ESI-MS data are in excellent agreement with the calcium binding behavior in bulk solution. The situation is more challenging when studying proteins with very low affinities, but in the presence of tartrate qualitative information on protein-metal interactions can still be obtained. The beneficial effects of tartrate also extend to zinc binding experiments. This work does not directly explore the mechanism by which tartrate suppresses nonspecific metalation. However, it seems likely that weak chelators such as tartrate sequester metal ions within rapidly shrinking droplets during the final stages of ESI, thereby reducing nonspecific metal adduction to protein carboxylates. The use of tartrate and possibly other weak chelators will greatly enhance the reliability of future ESI-MS studies on the interactions of proteins with divalent metal ions.
The Journal of Neuroscience | 2013
Valeriy G. Ostapchenko; Flavio H. Beraldo; Amro Hasan Mohammad; Yu Feng Xie; Pedro H. F. Hirata; Ana C. Magalhaes; Guillaume Lamour; Hongbin Li; Andrzej Maciejewski; Jillian C. Belrose; Bianca Luise Teixeira; Margaret Fahnestock; Sergio T. Ferreira; Neil R. Cashman; Glaucia N. M. Hajj; Michael F. Jackson; Wing-Yiu Choy; John F. MacDonald; Vilma R. Martins; Vania F. Prado; Marco A. M. Prado
In Alzheimers disease (AD), soluble amyloid-β oligomers (AβOs) trigger neurotoxic signaling, at least partially, via the cellular prion protein (PrPC). However, it is unknown whether other ligands of PrPC can regulate this potentially toxic interaction. Stress-inducible phosphoprotein 1 (STI1), an Hsp90 cochaperone secreted by astrocytes, binds to PrPC in the vicinity of the AβO binding site to protect neurons against toxic stimuli. Here, we investigated a potential role of STI1 in AβO toxicity. We confirmed the specific binding of AβOs and STI1 to the PrP and showed that STI1 efficiently inhibited AβO binding to PrP in vitro (IC50 of ∼70 nm) and also decreased AβO binding to cultured mouse primary hippocampal neurons. Treatment with STI1 prevented AβO-induced synaptic loss and neuronal death in mouse cultured neurons and long-term potentiation inhibition in mouse hippocampal slices. Interestingly, STI1-haploinsufficient neurons were more sensitive to AβO-induced cell death and could be rescued by treatment with recombinant STI1. Noteworthy, both AβO binding to PrPC and PrPC-dependent AβO toxicity were inhibited by TPR2A, the PrPC-interacting domain of STI1. Additionally, PrPC–STI1 engagement activated α7 nicotinic acetylcholine receptors, which participated in neuroprotection against AβO-induced toxicity. We found an age-dependent upregulation of cortical STI1 in the APPswe/PS1dE9 mouse model of AD and in the brains of AD-affected individuals, suggesting a compensatory response. Our findings reveal a previously unrecognized role of the PrPC ligand STI1 in protecting neurons in AD and suggest a novel pathway that may help to offset AβO-induced toxicity.
PLOS ONE | 2011
Elio A. Cino; Jirasak Wong-ekkabut; Mikko Karttunen; Wing-Yiu Choy
Intrinsically disordered proteins (IDPs) are abundant in cells and have central roles in protein-protein interaction networks. Interactions between the IDP Prothymosin alpha (ProTα) and the Neh2 domain of Nuclear factor erythroid 2-related factor 2 (Nrf2), with a common binding partner, Kelch-like ECH-associated protein 1(Keap1), are essential for regulating cellular response to oxidative stress. Misregulation of this pathway can lead to neurodegenerative diseases, premature aging and cancer. In order to understand the mechanisms these two disordered proteins employ to bind to Keap1, we performed extensive 0.5–1.0 microsecond atomistic molecular dynamics (MD) simulations and isothermal titration calorimetry experiments to investigate the structure/dynamics of free-state ProTα and Neh2 and their thermodynamics of bindings. The results show that in their free states, both ProTα and Neh2 have propensities to form bound-state-like β-turn structures but to different extents. We also found that, for both proteins, residues outside the Keap1-binding motifs may play important roles in stabilizing the bound-state-like structures. Based on our findings, we propose that the binding of disordered ProTα and Neh2 to Keap1 occurs synergistically via preformed structural elements (PSEs) and coupled folding and binding, with a heavy bias towards PSEs, particularly for Neh2. Our results provide insights into the molecular mechanisms Neh2 and ProTα bind to Keap1, information that is useful for developing therapeutics to enhance the oxidative stress response.
Frontiers in Neuroscience | 2017
Rachel Lackie; Andrzej Maciejewski; Valeriy G. Ostapchenko; Jose Marques-Lopes; Wing-Yiu Choy; Martin L. Duennwald; Vania F. Prado; Marco A. M. Prado
The accumulation of misfolded proteins in the human brain is one of the critical features of many neurodegenerative diseases, including Alzheimers disease (AD). Assembles of beta-amyloid (Aβ) peptide—either soluble (oligomers) or insoluble (plaques) and of tau protein, which form neurofibrillary tangles, are the major hallmarks of AD. Chaperones and co-chaperones regulate protein folding and client maturation, but they also target misfolded or aggregated proteins for refolding or for degradation, mostly by the proteasome. They form an important line of defense against misfolded proteins and are part of the cellular quality control system. The heat shock protein (Hsp) family, particularly Hsp70 and Hsp90, plays a major part in this process and it is well-known to regulate protein misfolding in a variety of diseases, including tau levels and toxicity in AD. However, the role of Hsp90 in regulating protein misfolding is not yet fully understood. For example, knockdown of Hsp90 and its co-chaperones in a Caenorhabditis elegans model of Aβ misfolding leads to increased toxicity. On the other hand, the use of Hsp90 inhibitors in AD mouse models reduces Aβ toxicity, and normalizes synaptic function. Stress-inducible phosphoprotein 1 (STI1), an intracellular co-chaperone, mediates the transfer of clients from Hsp70 to Hsp90. Importantly, STI1 has been shown to regulate aggregation of amyloid-like proteins in yeast. In addition to its intracellular function, STI1 can be secreted by diverse cell types, including astrocytes and microglia and function as a neurotrophic ligand by triggering signaling via the cellular prion protein (PrPC). Extracellular STI1 can prevent Aβ toxic signaling by (i) interfering with Aβ binding to PrPC and (ii) triggering pro-survival signaling cascades. Interestingly, decreased levels of STI1 in C. elegans can also increase toxicity in an amyloid model. In this review, we will discuss the role of intracellular and extracellular STI1 and the Hsp70/Hsp90 chaperone network in mechanisms underlying protein misfolding in neurodegenerative diseases, with particular focus on AD.
Journal of Molecular Biology | 2013
Halema Khan; Elio A. Cino; Anne Brickenden; Jing-Song Fan; Daiwen Yang; Wing-Yiu Choy
Kelch-like ECH-associated protein 1 (Keap1) is an inhibitor of nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor for cytoprotective gene activation in the oxidative stress response. Under unstressed conditions, Keap1 interacts with Nrf2 in the cytoplasm via its Kelch domain and suppresses the transcriptional activity of Nrf2. During oxidative stress, Nrf2 is released from Keap1 and is translocated into the nucleus, where it interacts with the small Maf protein to initiate gene transcription. Prothymosin α (ProTα), an intrinsically disordered protein, also interacts with the Kelch domain of Keap1 and mediates the import of Keap1 into the nucleus to inhibit Nrf2 activity. To gain a molecular basis understanding of the oxidative stress response mechanism, we have characterized the interaction between ProTα and the Kelch domain of Keap1 by using nuclear magnetic resonance spectroscopy, isothermal titration calorimetry, peptide array analysis, site-directed mutagenesis, and molecular dynamic simulations. The results of nuclear magnetic resonance chemical shift mapping, amide hydrogen exchange, and spin relaxation measurements revealed that ProTα retains a high level of flexibility, even in the bound state with Kelch. This finding is in agreement with the observations from the molecular dynamic simulations of the ProTα-Kelch complex. Mutational analysis of ProTα, guided by peptide array data and isothermal titration calorimetry, further pinpointed that the region (38)NANEENGE(45) of ProTα is crucial for the interaction with the Kelch domain, while the flanking residues play relatively minor roles in the affinity of binding.