Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wingkei Ho is active.

Publication


Featured researches published by Wingkei Ho.


ACS Applied Materials & Interfaces | 2013

In Situ Construction of g-C3N4/g-C3N4 Metal-Free Heterojunction for Enhanced Visible-Light Photocatalysis

Fan Dong; Zaiwang Zhao; Ting Xiong; Zilin Ni; Wendong Zhang; Yanjuan Sun; Wingkei Ho

The photocatalytic performance of the star photocatalyst g-C3N4 was restricted by the low efficiency because of the fast charge recombination. The present work developed a facile in situ method to construct g-C3N4/g-C3N4 metal-free isotype heterojunction with molecular composite precursors with the aim to greatly promote the charge separation. Considering the fact that g-C3N4 samples prepared from urea and thiourea separately have different band structure, the molecular composite precursors of urea and thiourea were treated simultaneously under the same thermal conditions, in situ creating a novel layered g-C3N4/g-C3N4 metal-free heterojunction (g-g CN heterojunction). This synthesis method is facile, economic, and environmentally benign using easily available earth-abundant green precursors. The confirmation of isotype g-g CN heterojunction was based on XRD, HRTEM, valence band XPS, ns-level PL, photocurrent, and EIS measurement. Upon visible-light irradiation, the photogenerated electrons transfer from g-C3N4 (thiourea) to g-C3N4 (urea) driven by the conduction band offset of 0.10 eV, whereas the photogenerated holes transfer from g-C3N4 (urea) to g-C3N4 (thiourea) driven by the valence band offset of 0.40 eV. The potential difference between the two g-C3N4 components in the heterojunction is the main driving force for efficient charge separation and transfer. For the removal of NO in air, the g-g CN heterojunction exhibited significantly enhanced visible light photocatalytic activity over g-C3N4 alone and physical mixture of g-C3N4 samples. The enhanced photocatalytic performance of g-g CN isotype heterojunction can be directly ascribed to efficient charge separation and transfer across the heterojunction interface as well as prolonged lifetime of charge carriers. This work demonstrated that rational design and construction of isotype heterojunction could open up a new avenue for the development of new efficient visible-light photocatalysts.


Langmuir | 2008

Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx.

Yu Huang; Wingkei Ho; S.C. Lee; Lizhi Zhang; Guisheng Li; Jimmy C. Yu

Effective mesoporous nanocrystalline C-doped TiO(2) photocatalysts were synthesized through a direct solution-phase carbonization using titanium tetrachloride and diethanolamine as precursors. X-ray photoelectron spectroscopy (XPS) results revealed that oxygen sites in the TiO(2) lattice were substituted by carbon atoms and formed a C-Ti-O-C structure. The absorption region of the as-prepared TiO(2) was extended to the visible light region in view of the substitution for oxygen sites by carbon atoms. The photocatalytic activities of the as-prepared samples were tested in a flow system on the degradation of NO at typical indoor air levels under simulated solar-light irradiation. The samples showed a more effective removal efficiency than commercial photocatalyst (P25) on the degradation of the common indoor pollutant NO. The parameters significantly affecting the mesoporous structure and removal efficiency on indoor air were also investigated.


Small | 2015

A Hierarchical Z‐Scheme CdS–WO3 Photocatalyst with Enhanced CO2 Reduction Activity

Jian Jin; Jiaguo Yu; Daipeng Guo; Can Cui; Wingkei Ho

The development of an artificial photosynthetic system is a promising strategy to convert solar energy into chemical fuels. Here, a direct Z-scheme CdS-WO(3) photocatalyst without an electron mediator is fabricated by imitating natural photosynthesis of green plants. Photocatalytic activities of as-prepared samples are evaluated on the basis of photocatalytic CO(2) reduction to form CH(4) under visible light irradiation. These Z-scheme-heterostructured samples show a higher photocatalytic CO(2) reduction than single-phase photocatalysts. An optimized CdS-WO(3) heterostructure sample exhibits the highest CH(4) production rate of 1.02 μmol h(-1) g(-1) with 5 mol% CdS content, which exceeds the rates observed in single-phase WO(3) and CdS samples for approximately 100 and ten times under the same reaction condition, respectively. The enhanced photocatalytic activity could be attributed to the formation of a hierarchical direct Z-scheme CdS-WO(3) photocatalyst, resulting in an efficient spatial separation of photo-induced electron-hole pairs. Reduction and oxidation catalytic centers are maintained in two different regions to minimize undesirable back reactions of the photocatalytic products. The introduction of CdS can enhance CO(2) molecule adsorption, thereby accelerating photocatalytic CO(2) reduction to CH(4). This study provides novel insights into the design and fabrication of high-performance artificial Z-scheme photocatalysts to perform photocatalytic CO(2) reduction.


New Journal of Chemistry | 2002

Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films

Jiaguo Yu; Jimmy C. Yu; Wingkei Ho; Zi-Tao Jiang

Mesoporous TiO2 nanometer thin films were prepared on fused quartz by the dip-coating sol–gel method from a system containing a triblock copolymer as a template (or pore-forming agent), and then calcined at different temperatures. These films were characterized by X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, BET surface area and UV-visible spectrophotometry. The photocatalytic activity and photo-induced super-hydrophilicity of the films were evaluated by the photocatalytic degradation of acetone and water contact angle measurement in air, respectively. It was found that the thin films calcined at 700 °C not only show the highest photocatalytic activity, but also possess the greatest light-induced hydrophilicity and the slowest conversion rate from the hydrophilic to a hydrophobic state. The former is attributed to the fact that the films calcined at 700 °C are composed of anatase and rutile, which is beneficial in enhancing the transfer of photo-generated electrons from the anatase to the rutile phase, reducing the electron–hole combination rate in anatase and enhancing its activity. The high light-induced hydrophilicity and slow hydrophilic to hydrophobic conversion rate are due to the synergetic effect of good photocatalytic activity, sufficient surface hydroxyl content and a degree of surface roughness. Because of their high specific surface areas and mesoporous structures, the photocatalytic activity of mesoporous TiO2 thin films is higher than that of conventional TiO2 thin films.


Langmuir | 2012

Novel in Situ N-Doped (BiO)2CO3 Hierarchical Microspheres Self-Assembled by Nanosheets as Efficient and Durable Visible Light Driven Photocatalyst

Fan Dong; Yanjuan Sun; Min Fu; Wingkei Ho; Shun Cheng Lee; Zhongbiao Wu

Novel N-doped (BiO)(2)CO(3) hierarchical microspheres (N-BOC) were fabricated by a facile one-pot template free method on the basis of hydrothermal treatment of bismuth citrate and urea in water for the first time. The N-BOC sample was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, scanning electron microscopy, transmission electron microscopy, N(2) adsorption-desorption isotherms, and Fourier transform-infrared spectroscopy. The N-BOC was constructed by the self-assembly of single-crystalline nanosheets. The aggregation of nanosheets led to the formation of hierarchical framework with mesopores, which is favorable for efficient transport of reaction molecules and harvesting of photoenergy. Due to the in situ doped nitrogen substituting for oxygen in the lattice of (BiO)(2)CO(3), the band gap of N-BOC was reduced from 3.4 to 2.5 eV, making N-BOC visible light active. The N-BOC exhibited not only excellent visible light photocatalytic activity, but also high photochemical stability and durability during repeated and long-term photocatalytic removal of NO in air due to the special hierarchical structure. This work demonstrates that the facile fabrication method for N-BOC combined with the associated outstanding visible light photocatalytic performance could provide new insights into the morphology-controlled fabrication of nanostructured photocatalytic materials for environmental pollution control.


Journal of Photochemistry and Photobiology A-chemistry | 2002

Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders

Jimmy C. Yu; Jiaguo Yu; Lizhi Zhang; Wingkei Ho

A simple method for preparing highly photoactive nano-sized TiO2 photocatalyst with anatase and brookite phase was developed by hydrolysis of titanium tetraisopropoxide in pure water or the EtOH/H2O mixed solution under ultrasonic irradiation. The prepared TiO2 powders were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and BET surface areas. The photocatalytic activity was evaluated by the photocatalytic oxidation of acetone in air. The results showed that the photocatalytic activity of TiO 2 powders prepared by this method from pure water or the EtOH/H2O mixed solutions with the molar ratio of EtOH/H2O = 1 exceeded that of Degussa P-25. The molar ratios of EtOH/H2O obviously influenced the crystallization, crystallite size, BET surface areas and photocatalytic activity of the prepared TiO 2 powders. Ultrasonic irradiation obviously enhanced the photocatalytic activity of TiO 2 powders whether the solvent is pure water or the EtOH/H2O mixed solutions. This may be ascribed to the fact that ultrasonic irradiation enhances hydrolysis of titanium alkoxide and crystallization of TiO2 gel.


Journal of Physical Chemistry Letters | 2015

Graphene-Based Photocatalysts for CO2 Reduction to Solar Fuel

Jingxiang Low; Jiaguo Yu; Wingkei Ho

Recently, photocatalytic CO2 reduction for solar fuel production has attracted much attention because of its potential for simultaneously solving energy and global warming problems. Many studies have been conducted to prepare novel and efficient photocatalysts for CO2 reduction. Graphene, a two-dimensional material, has been increasingly used in photocatalytic CO2 reduction. In theory, graphene shows several remarkable properties, including excellent electronic conductivity, good optical transmittance, large specific surface area, and superior chemical stability. Attributing to these advantages, fabrication of graphene-based materials has been known as one of the most feasible strategies to improve the CO2 reduction performance of photocatalysts. This Perspective mainly focuses on the recent important advances in the fabrication and application of graphene-based photocatalysts for CO2 reduction to solar fuels. The existing challenges and difficulties of graphene-based photocatalysts are also discussed for future application.


Journal of Colloid and Interface Science | 2013

Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity

Fan Dong; Zhenyu Wang; Yanjuan Sun; Wingkei Ho; Haidong Zhang

In order to develop g-C3N4 for better visible light photocatalysis, g-C3N4 nanoarchitectures was synthesized by direct pyrolysis of cheap urea at 550°C and engineered through the variation of pyrolysis time. By prolonging the pyrolysis time, the crystallinity of the resulted sample was enhanced, the thickness and size of the layers were reduced, the surface area and pore volume were significantly enlarged, and the band structure was modified. Especially for urea treated for 4h, the obtained g-C3N4 nanosheets possessed high surface area (288 m(2)/g) due to the reduced layer thickness and the improved porous structure. A layer exfoliation and splitting mechanism was proposed to explain the gradual reduction of layer thickness and size of g-C3N4 nanoarchitectures with increased pyrolysis time. The as-synthesized g-C3N4 samples were applied for photocatalytic removal of gaseous NO and aqueous RhB under visible light irradiation. It was found that the activity of g-C3N4 was gradually improved as the pyrolysis time was prolonged from 0 min to 240 min. The enhanced crystallinity, reduced layer thickness, high surface area, large pore volume, enlarged band gap, and reduced number of defects were responsible for the activity enhancement of g-C3N4 sample treated for a longer time. As the precursor urea is very cheap and the synthesis method is facile template-free, the as-synthesized g-C3N4 nanoscale sheets could provide an efficient visible light driven photocatalyst for large-scale applications.


Journal of Hazardous Materials | 2011

Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: one-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air.

Fan Dong; S.C. Lee; Zhongbiao Wu; Yu Huang; Min Fu; Wingkei Ho; Shichun Zou; Bo Wang

Rose-like monodisperse hierarchical (BiO)(2)CO(3) hollow microspheres are fabricated by a one-pot template-free method for the first time based on hydrothermal treatment of ammonia bismuth citrate and urea in water. The microstructure and band structure of the as-prepared (BiO)(2)CO(3) superstructure are characterized in detail by X-ray diffraction, Raman spectroscopy, Fourier transform-infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, N(2) adsorption-desorption isotherms, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The monodisperse hierarchical (BiO)(2)CO(3) microspheres are constructed by the self-assembly of single-crystalline nanosheets. The aggregation of nanosheets result in the formation of three dimensional hierarchical framework containing mesopores and macropores, which is favorable for efficient transport of reaction molecules and harvesting of photo-energy. The result reveals the existence of special two-band-gap structure (3.25 and 2.0 eV) for (BiO)(2)CO(3). The band gap of 3.25 eV is intrinsic and the formation of smaller band gap of 2.0 eV can be ascribed to the in situ doped nitrogen in lattice. The performance of hierarchical (BiO)(2)CO(3) microspheres as efficient photocatalyst are further demonstrated in the removal of NO in indoor air under both visible light and UV irradiation. It is found that the hierarchical (BiO)(2)CO(3) microspheres not only exhibit excellent photocatalytic activity but also high photochemical stability during long term photocatalytic reaction. The special microstructure, the high charge separation efficiency due to the inductive effect, and two-band-gap structure in all contribute to the outstanding photocatalytic activities. The discovery of monodisperse hierarchical nitrogen doped (BiO)(2)CO(3) hollow structure is significant because of its potential applications in environmental pollution control, solar energy conversion, catalysis and other related areas.


Chemical Communications | 2001

Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation.

Jimmy C. Yu; Jiaguo Yu; Wingkei Ho; Lizhi Zhang

A novel method for preparing highly photoactive nano-sized TiO2 photocatalysts with anatase and brookite phases has been developed by hydrolysis of titanium tetraisoproproxide in pure water or a 1:1 EtOH-H2O solution under ultrasonic irradiation; the photocatalytic activity of TiO2 particles prepared by this method exceeded that of Degussa P25.

Collaboration


Dive into the Wingkei Ho's collaboration.

Top Co-Authors

Avatar

Jiaguo Yu

Wuhan University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yu Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

S.C. Lee

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Fan Dong

Chongqing Technology and Business University

View shared research outputs
Top Co-Authors

Avatar

Jimmy C. Yu

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Shun Cheng Lee

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Junji Cao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Bei Cheng

Wuhan University of Technology

View shared research outputs
Top Co-Authors

Avatar

Lizhi Zhang

Central China Normal University

View shared research outputs
Top Co-Authors

Avatar

Yanjuan Sun

Chongqing Technology and Business University

View shared research outputs
Researchain Logo
Decentralizing Knowledge