Winita Punyodom
Chiang Mai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Winita Punyodom.
BioMed Research International | 2014
Donraporn Daranarong; Rodman T. H. Chan; Nico S. Wanandy; Robert Molloy; Winita Punyodom; L. John R. Foster
Electrospinning can produce nanofibrous scaffolds that mimic the architecture of the extracellular matrix and support cell attachment for tissue engineering applications. In this study, fibrous membranes of polyhydroxybutyrate (PHB) with various loadings of poly(L-lactide-co-ε-caprolactone) (PLCL) were successfully prepared by electrospinning. In comparison to PLCL scaffolds, PLCL blends with PHB exhibited more irregular fibre diameter distributions and higher average fibre diameters but there were no significant differences in pore size. PLCL/PHB scaffolds were more hydrophilic (<120°) with significantly reduced tensile strength (ca. 1 MPa) compared to PLCL scaffolds (150.9 ± 2.8° and 5.8 ± 0.5 MPa). Increasing PLCL loading in PHB/PLCL scaffolds significantly increased the extension at break, (4–6-fold). PLCL/PHB scaffolds supported greater adhesion and proliferation of olfactory ensheathing cells (OECs) than those exhibiting asynchronous growth on culture plates. Mitochondrial activity of cells cultivated on the electrospun blended membranes was enhanced compared to those grown on PLCL and PHB scaffolds (212, 179, and 153%, resp.). Analysis showed that PLCL/PHB nanofibrous membranes promoted cell cycle progression and reduced the onset of necrosis. Thus, electrospun PLCL/PHB composites promoted adhesion and proliferation of OECs when compared to their individual PLCL and PHB components suggesting potential in the repair and engineering of nerve tissue.
Journal of Molecular Modeling | 2013
Chanchai Sattayanon; Nawee Kungwan; Winita Punyodom; Puttinan Meepowpan; Siriporn Jungsuttiwong
A theoretical investigation of the ring-opening polymerization (ROP) mechanism of ε-caprolactone (CL) with tin(II) alkoxide, Sn(OR)2 initiators (R = n-C4H9, i-C4H9, t-C4H9, n-C6H13, n-C8H17) was studied. The density functional theory at B3LYP level was used to perform the modeled reactions. A coordination-insertion mechanism was found to occur via two transition states. Starting with a coordination of CL onto tin center led to a nucleophilic addition of the carbonyl group of CL, followed by the exchange of alkoxide ligand. The CL ring opening was completed through classical acyl-oxygen bond cleavage. The reaction barrier heights of ε-caprolactone with different initiators were calculated using potential energy profiles. The reaction of ε-caprolactone with Sn(OR)2 having R = n-C4H9 has the least value of barrier height compared to other reactions. The rate constants for each reaction were calculated using the transition state theory with TheRATE program. The rate constants are in good agreement with available experimental data.
Advanced Materials Research | 2008
A. Kleawkla; Robert Molloy; Wimol Naksata; Winita Punyodom
Two novel tin(II) alkoxides, namely: tin(II) hexoxide, Sn(OC6H13)2, and tin(II) octoxide, Sn(OC8H17)2, have been synthesized for use as coordination-insertion initiators in the bulk ring-opening polymerization of ε-caprolactone. The kinetics of the polymerization reactions were studied at 140 °C by dilatometry. It was found that both alkoxides were slow to dissolve in the ε-caprolactone monomer due to their molecular aggregation in the solid state. As a result, the slow solubilization of the initiators gave rise to deviations from the expected first-order kinetics. Instead, the kinetic results adhered more closely to zero-order kinetics with apparent zero-order rate constants k0 of 6.58 x 10-2 and 4.63 x 10-2 mol l-1 min-1 for the hexoxide and octoxide respectively
Advanced Materials Research | 2012
Wijitra Meelua; V. Bua-Own; Robert Molloy; Winita Punyodom
Four metal tert-butoxides, namely: aluminum (III) tert-butoxide, Al (Ot-C4H9)3, tin (II) tert-butoxide, Sn (Ot-C4H9)2, titanium (IV) tert-butoxide, Ti (Ot-C4H9)4, and lithium tert-butoxide, Li (Ot-C4H9), were used as initiators in the bulk ring-opening polymerization (ROP) of ε-caprolactone (CL). The polymerizations were carried out at 120 °C for 72 hrs. It was found that the Al (Ot-C4H9)3 only partially dissolved in the CL monomer and gave a low % conversion. The Li (Ot-C4H9) initiator did not dissolve and gave no polymerization. In contrast, the Sn (Ot-C4H9)2 initiator dissolved completely, albeit very slowly, and gave a high % conversion. The Ti (Ot-C4H9)4 initiator was by far the easiest and quickest to dissolve and also gave a high % conversion. Consequently, Ti (Ot-C4H9)4-initiated polymerization was studied further by dilatometry at 120°C. From the kinetic results, a first-order rate constant, kp, of 0.120 l mol-1 min-1 was obtained.
Journal of Biomaterials Science-polymer Edition | 2014
Boontharika Thapsukhon; Donraporn Daranarong; Puttinan Meepowpan; Nuttee Suree; Robert Molloy; Kewalin Inthanon; Weerah Wongkham; Winita Punyodom
In this study, for the first time, a biodegradable poly(L-lactide-co-ε-caprolactone), PLC 67:33 copolymer was developed for use as temporary scaffolds in reconstructive nerve surgery. The effect of the surface topology and pore architecture were studied on the biocompatibility for supporting the growth of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells (hWJ-MSCs) and human neuroblastoma cells (hNBCs) as cell models. Porous PLC membranes were prepared by electrospinning and phase immersion precipitation with particulate leaching and nonporous PLC membranes were prepared by solvent casting. From the results, the porous PLC membranes can support hWJ-MSCs and hNBCs cells better than the nonporous PLC membrane, and the interconnected pore scaffold prepared by electrospinning exhibited a more significant supporting attachment of the cells than the open pore and nonporous membranes. We can consider that these electrospun PLC membranes with 3-D interconnecting fiber networks and a high porosity warrant a potential use as nerve guides in reconstructive nerve surgery.
Journal of Polymers and The Environment | 2018
Kanyarat Suthapakti; Robert Molloy; Winita Punyodom; Kanarat Nalampang; Thanawadee Leejarkpai; Paul D. Topham; Brian J. Tighe
Biodegradable blends of poly(l-lactide) (PLL) toughened with a polycaprolactone-based thermoplastic polyurethane (TPU) elastomer and compatibilized with a purpose-designed poly(l-lactide-co-caprolactone) (PLLCL) copolymer were prepared. Both 2-component (PLL/TPU) and 3-component (PLL/TPU/PLLCL) blends of various compositions were prepared by melt mixing, hot-pressed into thin films and their properties tested. The results showed that, although the TPU could toughen the PLL, the blends were immiscible leading to phase separation with the TPU domains distributed in the PLL matrix. However, addition of the PLLCL copolymer could partially compatibilize the blend by improving the interfacial adhesion between the two phases. Biodegradability testing showed that the blends were biodegradable and that the PLLCL copolymer could increase the rate of biodegradation under controlled composting conditions. The 3-component blend of composition PLL/TPU/PLLCL = 90/10/10 parts by weight was found to exhibit the best all-round properties.
Stem Cells International | 2016
Kewalin Inthanon; Donraporn Daranarong; Pimwalan Techaikool; Winita Punyodom; Vorathep Khaniyao; Audrey M. Bernstein; Weerah Wongkham
Stem cells based tissue engineering requires biocompatible materials, which allow the cells to adhere, expand, and differentiate in a large scale. An ideal biomaterial for clinical application should be free from mammalian products which cause immune reactivities and pathogen infections. We invented a novel biodegradable poly(L-lactic-co-ε-caprolactone)-sericin (PLCL-SC) copolymer membrane which was fabricated by electrospinning. Membranes with concentrations of 2.5 or 5% (w/v) SC exhibited qualified texture characteristics with a noncytotoxic release profile. The hydrophilic properties of the membranes were 35–40% higher than those of a standard PLCL and commercial polystyrene (PS). The improved characteristics of the membranes were due to an addition of new functional amide groups, C=O, N–H, and C–N, onto their surfaces. Degradation of the membranes was controllable, depending on the content proportion of SC. Results of thermogram indicated the superior stability and crystallinity of the membranes. These membranes enhanced human Whartons jelly mesenchymal stem cells (hWJMSC) proliferation by increasing cyclin A and also promoted cell adhesion by upregulating focal adhesion kinase (FAK). On the membranes, hWJMSC differentiated into a neuronal lineage with the occurrence of nestin. These data suggest that PLCL-SC electrospun membrane represents some properties which will be useful for tissue engineering and medical applications.
New Journal of Chemistry | 2018
R Stefan; Jaroon Jakmunee; Winita Punyodom; Pisith Singjai
Zerovalent and other iron-based phases were fabricated in the form of thin films in the presence of a magnetic field. TEM measurements showed the secondary size of nanoparticles to be approximately 15 nm. The crystallinity of the zerovalent nanoparticles was increased by fabrication inside of a magnetic field, which led to increased stability of the nanoparticles in ambient air and to a discovery of a new reaction in which a magnetic field of 0.2 Tesla affected the products of the chemical reaction between iron and nitrogen. Crystallinity and phase change were confirmed by XPS and GIXRD characterization.
Preparative Biochemistry & Biotechnology | 2017
Watsana Penkhrue; Apinun Kanpiengjai; Chartchai Khanongnuch; Kazuo Masaki; Wasu Pathom-aree; Winita Punyodom
ABSTRACT This study aims to find the optimal medium and conditions for polylactic acid (PLA)-degrading enzyme production by Amycolatopsis sp. SCM_MK2-4. Screening of the most effective components in the enzyme production medium by Plackett–Burman design revealed that the silk cocoon and PLA film were the most significant variables enhancing the PLA-degrading enzyme production. After an response surface methodology, a maximum amount of PLA-degrading enzyme activity at 0.74 U mL−1 was predicted and successfully validated at 95% after 0.39% (w/v) silk cocoon and 1.62% (w/v) PLA film were applied to the basal medium. The optimal initial pH value, temperature, and inoculum size were evaluated by a method considering one-factor-at-a-time. The values were recorded at an initial pH in the range of 7.5–9.0, a temperature of 30–32°C, and an inoculum size of 4–10%. The highest activity of approximately 0.95 U mL−1 was achieved after 4 days of cultivation using the optimized medium and under optimized conditions in a shake flask. Upscaling to the use of a 3-L stirred tank fermenter was found to be successful with a PLA-degrading activity of 5.53 U mL−1; which represents a 51-fold increase in the activity compared with that obtained from the nonoptimized medium and conditions in the shake flask.
Analytical Letters | 2017
Poachanee Norfun; Nuttee Suree; Nawee Kungwan; Winita Punyodom; Jaroon Jakmunee; Kontad Ounnunkad
ABSTRACT Biofunctionalizing a simple and disposable graphene oxide-modified screen-printed carbon electrode with anti-interleukin-15 antibodies has been successfully demonstrated for the first time for the label-free electrochemical detection of interleukin-15, a biomarker of early HIV infection. To improve the electrochemical reactivity and introduce carboxylic groups on the surface of screen-printed carbon electrode, high-quality graphene oxide was used for the modification of screen-printed carbon electrode. With simple modification of the screen-printed carbon electrode, the device exhibited satisfactory sensitivity, selectivity, stability, reproducibility, and regenerability. The immunosensor provided a detection limit of 3.51 ng mL−1 and a sensitivity of 0.5655 µA cm−2 mL ng−1. The simply constructed immunosensor thus rendered promising device for immunoreactions on the surface of the electrode.
Collaboration
Dive into the Winita Punyodom's collaboration.
Thailand National Science and Technology Development Agency
View shared research outputs