Wipawan Thangnipon
Mahidol University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wipawan Thangnipon.
Brain Research | 1991
Danxia Liu; Wipawan Thangnipon; David J. McAdoo
The release of glutamate, aspartate, glutamine and asparagine upon impact injury to the rat spinal cord was characterized by sample collection from the site of injury by microdialysis. Injury caused dramatic and long-lasting increases in the concentrations of the excitatory amino acids. Determination of the relationship between unperturbed extracellular levels and the levels of amino acids in the collected fluids indicates that the concentrations of these amino acids were probably high enough to kill neurons for longer than one hour following impact injury to the spinal cord. Increases in the concentrations of the metabolically related non-neurotransmitters asparagine and glutamine were considerably smaller. The latter observations suggest that much of the increase in levels of the excitatory amino acids resulted from neuronal activity rather than from simple damage.
The Journal of Neuroscience | 2008
Areechun Sotthibundhu; Alex M. Sykes; Briony Fox; Clare K. Underwood; Wipawan Thangnipon; Elizabeth J. Coulson
Alzheimers disease is characterized by the accumulation of neurotoxic amyloidogenic peptide Aβ, degeneration of the cholinergic innervation to the hippocampus (the septohippocampal pathway), and progressive impairment of cognitive function, particularly memory. Aβ is a ligand for the p75 neurotrophin receptor (p75NTR), which is best known for mediating neuronal death and has been consistently linked to the pathology of Alzheimers disease. Here we examined whether p75NTR is required for Aβ-mediated effects. Treatment of wild-type but not p75NTR-deficient embryonic mouse hippocampal neurons with human Aβ1–42 peptide induced significant cell death. Furthermore, injection of Aβ1–42 into the hippocampus of adult mice resulted in significant degeneration of wild-type but not p75NTR-deficient cholinergic basal forebrain neurons, indicating that the latter are resistant to Aβ-induced toxicity. We also found that neuronal death correlated with Aβ1–42 peptide-stimulated accumulation of the death-inducing p75NTR C-terminal fragment generated by extracellular metalloprotease cleavage of full-length p75NTR. Although neuronal death was prevented in the presence of the metalloprotease inhibitor TAPI-2 (tumor necrosis factor-α protease inhibitor-2), Aβ1–42-induced accumulation of the C-terminal fragment resulted from inhibition of γ-secretase activity. These results provide a novel mechanism to explain the early and characteristic loss of cholinergic neurons in the septohippocampal pathway that occurs in Alzheimers disease.
Neurobiology of Aging | 2008
Liqi Tong; Robert Balázs; Rungtip Soi-ampornkul; Wipawan Thangnipon; Carl W. Cotman
The expression of IL-1 is elevated in the CNS in diverse neurodegenerative disorders, including Alzheimers disease. The hypothesis was tested that IL-1 beta renders neurons vulnerable to degeneration by interfering with BDNF-induced neuroprotection. In trophic support-deprived neurons, IL-1 beta compromised the PI3-K/Akt pathway-mediated protection by BDNF and suppressed Akt activation. The effect was specific as in addition to Akt, the activation of MAPK/ERK, but not PLC gamma, was decreased. Activation of CREB, a target of these signaling pathways, was severely depressed by IL-1 beta. As the cytokine did not influence TrkB receptor and PLC gamma activation, IL-1 beta might have interfered with BDNF signaling at the docking step conveying activation to the PI3-K/Akt and Ras/MAPK pathways. Indeed, IL-1 beta suppressed the activation of the respective scaffolding proteins IRS-1 and Shc; this effect might involve ceramide generation. IL-1-induced interference with BDNF neuroprotection and signal transduction was corrected, in part, by ceramide production inhibitors and mimicked by the cell-permeable C2-ceramide. These results suggest that IL-1 beta places neurons at risk by interfering with BDNF signaling involving a ceramide-associated mechanism.
Neurobiology of Aging | 2009
Areechun Sotthibundhu; Qiao-Xin Li; Wipawan Thangnipon; Elizabeth J. Coulson
The generation of amyloid-beta peptide (Abeta) and its accumulation in amyloid plaques are generally recognized as key characteristics of Alzheimers disease. A number of reports have indicated that Abeta can regulate the proliferation of neural precursor cells and adult neurogenesis, suggesting that this may underpin the cognitive decline and compromised olfaction also associated with the condition. Here we report that Abeta(1-42) treatment both in vitro and in vivo, as well as endogenous generation of Abeta in C100 and APP/PS1 transgenic models of Alzheimers disease, stimulate neurogenesis of young adult subventricular zone precursors. The neurogenic effect of Abeta(1-42) was found to require expression of the p75 neurotrophin receptor (p75(NTR)) by the precursor cells, and activation of p75(NTR) by metalloprotease cleavage. However, precursors from 12-month-old APP/PS1 mice failed to respond to Abeta(1-42). Our results suggest that overstimulation of p75(NTR)-positive progenitors during early life might result in depletion of the stem cell pool and thus a more rapid decline in basal neurogenesis. This, in turn, could lead to impaired neurogenic function in later life.
Brain Research | 1991
Norihiko Iwamoto; Wipawan Thangnipon; Catherine Crawford; Piers C. Emson
An antibody raised against the calcium activated neutral protease (calpain) was used to investigate the possible involvement of this enzyme in the formation of plaques and tangles in Alzheimer-type dementia (ATD) brain. Our results revealed the presence of a number of strongly stained calpain positive neurones in the normal human cerebral cortex and a loss of calpain positive cells in ATD brain. Furthermore, double staining experiments revealed that calpain immunoreactivity was present in cells undergoing tangle formation, and was also present in senile plaques. These data suggest that activation of calpain may be an important factor in the abnormal proteolysis underlying the accumulation of plaques and tangles in ATD.
Brain Research | 2008
Rungtip Soi-ampornkul; Liqi Tong; Wipawan Thangnipon; Robert Balázs; Carl W. Cotman
It was previously observed that IL-1beta interferes with BDNF-induced TrkB-mediated signal transduction and protection of cortical neurons from apoptosis evoked by deprivation from trophic support [Tong L., Balazs R., Soiampornkul R., Thangnipon W., Cotman C.W., 2007. Interleukin-1beta impairs brain derived neurotrophic factor-induced signal transduction. Neurobiol. Aging]. Here we investigated whether the effect of the cytokine on neurotrophin signaling is more general. The influence of IL-1beta on NT-3 signaling was therefore studied under conditions when NT-3 primarily activated the TrkC receptor. The cytokine reduced NT-3-induced activation of MAPK/ERK and Akt, but did not interfere with Trk receptor autophosphorylation. IL-1beta reduced tyrosine phosphorylation of the docking proteins, IRS-1 and Shc, which convey receptor activation to the downstream protein kinase cascades. These are the steps that are also inhibited by IL-1beta in BDNF-induced signal transduction. The functional consequences of the effect of IL-1beta on NT-3 signaling were severe, as NT-3 protection of the trophic support-deprived cortical neurons was abrogated. In view of the role in the maintenance and plasticity of neurons of ERK, Akt and CREB, which are activated by neurotrophins, elevated IL-1beta levels in the brain in Alzheimers disease and other neurodegenerative diseases might contribute to the decline in cognitive functions before the pathological signs of the disease develop.
Neurochemical Research | 1992
Wipawan Thangnipon; Robert Balázs
The content and composition of gangliosides in cultures enriched in granule neurones and in astrocytes from rat cerebellum (P6–8) showed marked differences; astrocytes contained less than 10% of the amount of granule neurones and the profile was dominated by simple gangliosides with lactosyl ceramide backbone, while gangliosides of the ‘b’ series, which constitute about 40% in nerve cells, were virtually undetectable. Granule cell maturation was accompanied by a 16-fold increase in the ganglioside content during the initial 8 days in a serum-supplemented medium (S+), reaching a plateau much earlier and at a higher level than observed in the cerebellum in vivo. Developmental changes were characterized, as in vivo, by a pronounced decrease in the GD3 proportion and an increase in the ‘b’ series of gangliosides. Compared with S+, adhesion among cells and fibres is different in a serum-free medium (S−) in which the rise in cellular ganglioside content was less (30%) but the developmental changes in ganglioside profile were similar. However, in cultures in S− only, GM3 was not detectable, while the distribution of GM1 and GD3 indicated that maturation is retarded relative to cells in S+. Surface exposure of gangliosides (studied by the periodate/[3H]borohydride method) was similar under the two culture conditions. There was an initial delay, especially in S−, in the insertion of gangliosides into the plasma membrane, while the labelling of GD3 (the dominant ganglioside of immature granule cells) was very low compared with all the other species throughout the whole cultivation time.
Neuroscience Letters | 2012
Wipawan Thangnipon; Nirut Suwanna; Narisorn Kitiyanant; Rungtip Soi-ampornkul; Patoomratana Tuchinda; Bamroong Munyoo; Saksit Nobsathian
Enhanced oxidative stress and inflammation play important roles in the pathogenesis of Alzheimers disease (AD). Amyloid β-peptide (Aβ), a major component of amyloid plaques, is considered to have a causal role in the development and progress of AD by being the initiator of a pathological cascade leading to oxidative stress. The present study investigated the effect of N-trans-feruloyltyramine (NTF) purified from Polyalthia suberosa, an alkaloid shown to protect against oxidative stress and cell death. Pre-treatment of rat primary cortical cell cultures with 25-250μM NTF significantly attenuated 10μM Aβ(1-42)-induced neuronal death in a dose-dependent manner. Apoptotic cell death was demonstrated morphologically as well as by detection of the presence of activated caspase-3 and Bax, levels of which could be reduced by NTF pre-treatment. NTF also reduced production of reactive oxygen species induced by Aβ(1-42). These findings suggest that the protective effect of NTF against Aβ(1-42)-induced neuronal death might be due to its antioxidative property.
Neuroscience Letters | 2013
Wipawan Thangnipon; Nicha Puangmalai; Vorapin Chinchalongporn; Chanati Jantrachotechatchawan; Narisorn Kitiyanant; Rungtip Soi-ampornkul; Patoomratana Tuchinda; Saksit Nobsathian
The pathogenesis of Alzheimers disease involves an amyloid β-peptide (Aβ)-induced cascade of elevated oxidative damage and inflammation. The present study investigates the protective effects and the underlying mechanisms of N-benzylcinnamide (PT-3), purified from Piper submultinerve. Against Aβ-induced oxidative stress and inflammation in rat primary cortical cell cultures. Pre-treatment with 10-00nM PT-3 significantly attenuated neuronal cell death induced by 10μM Aβ1-42. PT-3 was found to enhance cell viability through a significant reduction in the level of reactive oxygen species, down-regulated expression of pro-apoptotic activated caspase-3 and Bax, increased expression of anti-apoptotic Bcl-2, and mitigation of Aβ-induced morphological alterations. Regarding its effects on inflammatory responses, PT-3 pre-treatment decreased the expression of pro-inflammatory cytokines IL-1β and IL-6. The mechanisms of PT-3 neuronal protection against inflammation may be associated with the mitogen-activated protein kinases (MAPK) pathway. Aβ1-42-induced phosphorylation of JNK and p38 MAPK was inhibited by pretreatment with PT-3 in a dose-dependent manner. However, phosphorylation of ERK1/2 was not affected by either PT-3 or Aβ1-42. PT-3 did not stimulate Akt phosphorylation, which was inhibited by Aβ1-42. These findings suggest that PT-3 protects neurons from Aβ1-42-induced neurotoxicity through its anti-apoptotic, anti-oxidative, and anti-inflammatory properties with inhibition of JNK and p38 MAPK phosphorylation as the potential underlying mechanism.
Neurochemical Research | 1995
Wipawan Thangnipon; Wipa Thangnipon; Pinsuda Luangpaiboon; Supranee Chinabut
The neurotoxic effects of monocrotophos on the brain of the nile tilapia fish (Oreochromis niloticus) were examined, using a static bioassay under laboratory conditions. By probit analysis the 96 h LC50 value of monocrotophos was 4.9 mg/l. After 96 h exposure to acute levels of monocrotophos, the brain acetylcholinesterase (AChE) activity decreased progressively as the concentration of monocrotophos increased. In addition, four weeks following transfer to toxicant-free water after exposure to 1 mg monocrotophos, nile tilapia fish brain regained 95% of control AChE activity. The results indicate that inhibition of AChE activity in fish exposed to monocrotophos may serve as an indicator of hazard due to application of this chemical in the natural environment.