Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wishal D. Ramdas is active.

Publication


Featured researches published by Wishal D. Ramdas.


Nature Genetics | 2013

Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus

Yi Lu; Veronique Vitart; Kathryn P. Burdon; Chiea Chuen Khor; Yelena Bykhovskaya; Alireza Mirshahi; Alex W. Hewitt; Demelza Koehn; Pirro G. Hysi; Wishal D. Ramdas; Tanja Zeller; Eranga N. Vithana; Belinda K. Cornes; Wan-Ting Tay; E. Shyong Tai; Ching-Yu Cheng; Jianjun Liu; Jia Nee Foo; Seang-Mei Saw; Gudmar Thorleifsson; Kari Stefansson; David P. Dimasi; Richard Arthur Mills; Jenny Mountain; Wei Ang; René Hoehn; Virginie J. M. Verhoeven; Franz H. Grus; Roger C. W. Wolfs; Raphaële Castagné

Central corneal thickness (CCT) is associated with eye conditions including keratoconus and glaucoma. We performed a meta-analysis on >20,000 individuals in European and Asian populations that identified 16 new loci associated with CCT at genome-wide significance (P < 5 × 10−8). We further showed that 2 CCT-associated loci, FOXO1 and FNDC3B, conferred relatively large risks for keratoconus in 2 cohorts with 874 cases and 6,085 controls (rs2721051 near FOXO1 had odds ratio (OR) = 1.62, 95% confidence interval (CI) = 1.4–1.88, P = 2.7 × 10−10, and rs4894535 in FNDC3B had OR = 1.47, 95% CI = 1.29–1.68, P = 4.9 × 10−9). FNDC3B was also associated with primary open-angle glaucoma (P = 5.6 × 10−4; tested in 3 cohorts with 2,979 cases and 7,399 controls). Further analyses implicate the collagen and extracellular matrix pathways in the regulation of CCT.


PLOS Genetics | 2010

A Genome-Wide Association Study of Optic Disc Parameters

Wishal D. Ramdas; Leonieke M. E. van Koolwijk; M. Kamran Ikram; Nomdo M. Jansonius; Paulus T. V. M. de Jong; Arthur A. B. Bergen; Aaron Isaacs; Najaf Amin; Yurii S. Aulchenko; Roger C. W. Wolfs; Albert Hofman; Fernando Rivadeneira; Ben A. Oostra; André G. Uitterlinden; Pirro G. Hysi; Christopher J. Hammond; Hans G. Lemij; Johannes R. Vingerling; Caroline C. W. Klaver; Cornelia M. van Duijn

The optic nerve head is involved in many ophthalmic disorders, including common diseases such as myopia and open-angle glaucoma. Two of the most important parameters are the size of the optic disc area and the vertical cup-disc ratio (VCDR). Both are highly heritable but genetically largely undetermined. We performed a meta-analysis of genome-wide association (GWA) data to identify genetic variants associated with optic disc area and VCDR. The gene discovery included 7,360 unrelated individuals from the population-based Rotterdam Study I and Rotterdam Study II cohorts. These cohorts revealed two genome-wide significant loci for optic disc area, rs1192415 on chromosome 1p22 (p = 6.72×10−19) within 117 kb of the CDC7 gene and rs1900004 on chromosome 10q21.3-q22.1 (p = 2.67×10−33) within 10 kb of the ATOH7 gene. They revealed two genome-wide significant loci for VCDR, rs1063192 on chromosome 9p21 (p = 6.15×10−11) in the CDKN2B gene and rs10483727 on chromosome 14q22.3-q23 (p = 2.93×10−10) within 40 kbp of the SIX1 gene. Findings were replicated in two independent Dutch cohorts (Rotterdam Study III and Erasmus Rucphen Family study; N = 3,612), and the TwinsUK cohort (N = 843). Meta-analysis with the replication cohorts confirmed the four loci and revealed a third locus at 16q12.1 associated with optic disc area, and four other loci at 11q13, 13q13, 17q23 (borderline significant), and 22q12.1 for VCDR. ATOH7 was also associated with VCDR independent of optic disc area. Three of the loci were marginally associated with open-angle glaucoma. The protein pathways in which the loci of optic disc area are involved overlap with those identified for VCDR, suggesting a common genetic origin.


Nature Genetics | 2010

A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14

Abbas M Solouki; Virginie J. M. Verhoeven; Cornelia M. van Duijn; Annemieke J. M. H. Verkerk; M. Kamran Ikram; Pirro G. Hysi; Dominiek D. G. Despriet; Leonieke M. E. van Koolwijk; Lintje Ho; Wishal D. Ramdas; Monika A. Czudowska; Robert W. A. M. Kuijpers; Najaf Amin; Maksim Struchalin; Yurii S. Aulchenko; Gabriel van Rij; Frans C C Riemslag; Terri L. Young; David A. Mackey; Tim D. Spector; Theo G. M. F. Gorgels; Jacqueline J. M. Willemse-Assink; Aaron Isaacs; Rogier Kramer; Sigrid Swagemakers; Arthur A. B. Bergen; Andy A L J van Oosterhout; Ben A. Oostra; Fernando Rivadeneira; André G. Uitterlinden

Refractive errors are the most common ocular disorders worldwide and may lead to blindness. Although this trait is highly heritable, identification of susceptibility genes has been challenging. We conducted a genome-wide association study for refractive error in 5,328 individuals from a Dutch population-based study with replication in four independent cohorts (combined 10,280 individuals in the replication stage). We identified a significant association at chromosome 15q14 (rs634990, P = 2.21 × 10−14). The odds ratio of myopia compared to hyperopia for the minor allele (minor allele frequency = 0.47) was 1.41 (95% CI 1.16–1.70) for individuals heterozygous for the allele and 1.83 (95% CI 1.42–2.36) for individuals homozygous for the allele. The associated locus is near two genes that are expressed in the retina, GJD2 and ACTC1, and appears to harbor regulatory elements which may influence transcription of these genes. Our data suggest that common variants at 15q14 influence susceptibility for refractive errors in the general population.


PLOS Genetics | 2012

Common Genetic Determinants of Intraocular Pressure and Primary Open-Angle Glaucoma

Leonieke M. E. van Koolwijk; Wishal D. Ramdas; M. Kamran Ikram; Nomdo M. Jansonius; Francesca Pasutto; Pirro G. Hysi; Stuart MacGregor; Sarah F. Janssen; Alex W. Hewitt; Ananth C. Viswanathan; Jacoline B. ten Brink; S. Mohsen Hosseini; Najaf Amin; Dominiek D. G. Despriet; Jacqueline J. M. Willemse-Assink; Rogier Kramer; Fernando Rivadeneira; Maksim Struchalin; Yurii S. Aulchenko; Nicole Weisschuh; Matthias Zenkel; Christian Y. Mardin; Eugen Gramer; Ulrich Welge-Lüssen; Grant W. Montgomery; Francis Carbonaro; Terri L. Young; Céline Bellenguez; P. McGuffin; Paul J. Foster

Intraocular pressure (IOP) is a highly heritable risk factor for primary open-angle glaucoma and is the only target for current glaucoma therapy. The genetic factors which determine IOP are largely unknown. We performed a genome-wide association study for IOP in 11,972 participants from 4 independent population-based studies in The Netherlands. We replicated our findings in 7,482 participants from 4 additional cohorts from the UK, Australia, Canada, and the Wellcome Trust Case-Control Consortium 2/Blue Mountains Eye Study. IOP was significantly associated with rs11656696, located in GAS7 at 17p13.1 (p = 1.4×10−8), and with rs7555523, located in TMCO1 at 1q24.1 (p = 1.6×10−8). In a meta-analysis of 4 case-control studies (total N = 1,432 glaucoma cases), both variants also showed evidence for association with glaucoma (p = 2.4×10−2 for rs11656696 and p = 9.1×10−4 for rs7555523). GAS7 and TMCO1 are highly expressed in the ciliary body and trabecular meshwork as well as in the lamina cribrosa, optic nerve, and retina. Both genes functionally interact with known glaucoma disease genes. These data suggest that we have identified two clinically relevant genes involved in IOP regulation.


Human Molecular Genetics | 2011

Common genetic variants associated with open-angle glaucoma

Wishal D. Ramdas; Leonieke M. E. van Koolwijk; Hans G. Lemij; Francesca Pasutto; Angela J. Cree; Gudmar Thorleifsson; Sarah F. Janssen; ten Brink Jacoline; Najaf Amin; Fernando Rivadeneira; Roger C. W. Wolfs; G. Bragi Walters; Fridbert Jonasson; Nicole Weisschuh; Christian Y. Mardin; Jane Gibson; Richard H.C. Zegers; Albert Hofman; Paulus T. V. M. de Jong; André G. Uitterlinden; Ben A. Oostra; Unnur Thorsteinsdottir; Eugen Gramer; Ulrich C. Welgen-Lüßen; James F. Kirwan; Arthur A. B. Bergen; André Reis; Kari Stefansson; Andrew J. Lotery; Johannes R. Vingerling

Open-angle glaucoma (glaucoma) is a major eye disorder characterized by optic disc pathology. Recent genome-wide association studies identified new loci associated with clinically relevant optic disc parameters, such as the optic disc area and vertical cup-disc ratio (VCDR). We examined to what extent these loci are involved in glaucoma. The loci studied include ATOH7, CDC7/TGFBR3 and SALL1 for optic disc area, and CDKN2B, SIX1, SCYL1/LTBP3, CHEK2, ATOH7 and DCLK1 for VCDR. We performed a meta-analysis using data from six independent studies including: the Rotterdam Study (n= 5736), Genetic Research in Isolated Populations combined with Erasmus Rucphen Family study (n= 1750), Amsterdam Glaucoma Study (n= 296) and cohorts from Erlangen and Tübingen (n= 1363), Southampton (n= 702) and deCODE (n= 36 151) resulting in a total of 3161 glaucoma cases and 42 837 controls. Of the eight loci, we found significant evidence (P= 1.41 × 10(-8)) for the association of CDKN2B with glaucoma [odds ratio (OR) for those homozygous for the risk allele: 0.76; 95% confidence interval (CI): 0.70-0.84], for the role of ATOH7 (OR: 1.28; 95% CI: 1.12-1.47) and for SIX1 (OR: 1.20; 95% CI: 1.10-1.31) when adjusting for the number of tested loci. Furthermore, there was a borderline significant association of CDC7/TGFBR3 and SALL1 (both P= 0.04) with glaucoma. In conclusion, we found consistent evidence for three common variants (CDKN2B, ATOH7 and SIX1) significantly associated with glaucoma. These findings may shed new light on the pathophysiological protein pathways leading to glaucoma, and point to pathways involved in the growth and development of the optic nerve.


American Journal of Human Genetics | 2009

Heterozygous NTF4 mutations impairing neurotrophin-4 signaling in patients with primary open-angle glaucoma.

Francesca Pasutto; Tomoya Matsumoto; Christian Y. Mardin; Heinrich Sticht; Johann Helmut Brandstätter; Karin Michels-Rautenstrauss; Nicole Weisschuh; Eugen Gramer; Wishal D. Ramdas; Leonieke M. E. van Koolwijk; C. C. W. Klaver; Johannes R. Vingerling; Bernhard H. F. Weber; Friedrich E. Kruse; Bernd Rautenstrauss; Yves-Alain Barde; André Reis

Glaucoma, a main cause of blindness in the developed world, is characterized by progressive degeneration of retinal ganglion cells (RGCs), resulting in irreversible loss of vision. Although members of the neurotrophin gene family in various species are known to support the survival of numerous neuronal populations, including RGCs, it is less clear whether they are also required for survival and maintenance of adult neurons in humans. Here, we report seven different heterozygous mutations in the Neurotrophin-4 (NTF4) gene accounting for about 1.7% of primary open-angle glaucoma patients of European origin. Molecular modeling predicted a decreased affinity of neurotrophin 4 protein (NT-4) mutants with its specific tyrosine kinase receptor B (TrkB). Expression of recombinant NT-4 carrying the most frequent mutation was demonstrated to lead to decreased activation of TrkB. These findings suggest a pathway in the pathophysiology of glaucoma through loss of neurotrophic function and may eventually open the possibility of using ligands activating TrkB to prevent the progression of the disease.


Nature Genetics | 2014

Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma

Pirro G. Hysi; Ching-Yu Cheng; Henriet Springelkamp; Stuart MacGregor; Jessica N. Cooke Bailey; Robert Wojciechowski; Veronique Vitart; Abhishek Nag; Alex W. Hewitt; René Höhn; Cristina Venturini; Alireza Mirshahi; Wishal D. Ramdas; Gudmar Thorleifsson; Eranga N. Vithana; Chiea Chuen Khor; Arni B Stefansson; Jiemin Liao; Jonathan L. Haines; Najaf Amin; Ya Xing Wang; Philipp S. Wild; Ayse B Ozel; Jun Li; Brian W. Fleck; Tanja Zeller; Sandra E Staffieri; Yik-Ying Teo; Gabriel Cuellar-Partida; Xiaoyan Luo

Elevated intraocular pressure (IOP) is an important risk factor in developing glaucoma, and variability in IOP might herald glaucomatous development or progression. We report the results of a genome-wide association study meta-analysis of 18 population cohorts from the International Glaucoma Genetics Consortium (IGGC), comprising 35,296 multi-ancestry participants for IOP. We confirm genetic association of known loci for IOP and primary open-angle glaucoma (POAG) and identify four new IOP-associated loci located on chromosome 3q25.31 within the FNDC3B gene (P = 4.19 × 10−8 for rs6445055), two on chromosome 9 (P = 2.80 × 10−11 for rs2472493 near ABCA1 and P = 6.39 × 10−11 for rs8176693 within ABO) and one on chromosome 11p11.2 (best P = 1.04 × 10−11 for rs747782). Separate meta-analyses of 4 independent POAG cohorts, totaling 4,284 cases and 95,560 controls, showed that 3 of these loci for IOP were also associated with POAG.


Progress in Retinal and Eye Research | 2013

The vast complexity of primary open angle glaucoma : Disease genes, risks, molecular mechanisms and pathobiology

Sarah F. Janssen; Theo G. M. F. Gorgels; Wishal D. Ramdas; Caroline C. W. Klaver; Cornelia M. van Duijn; Nomdo M. Jansonius; Arthur A. B. Bergen

Primary open angle glaucoma (POAG) is a complex progressive optic nerve neuropathy triggered by both environmental and genetic risk factors. Several ocular tissues, including the ciliary body, trabecular meshwork and optic nerve head, and perhaps even brain tissues, are involved in a chain of pathological events leading to POAG. Genetic risk evidence for POAG came from family linkage-studies implicating a small number of disease genes (MYOC, OPTN, WDR36). Recent Genome Wide Association Studies (GWAS) identified a large number of new POAG loci and disease genes, such as CAV1, CDKN2B and GAS7. In the current study, we reviewed over 120 family and GWA studies. We selected in total 65 (candidate) POAG disease genes and proceeded to assess their function, mRNA expression in POAG relevant eye tissues and possible changes in disease state. We found that the proteins corresponding to these 65 (candidate) POAG disease genes take part in as few as four common functional molecular networks. Functions attributed to these 4 networks were developmental (dys)function, lipid metabolism, and inflammatory processes. For the 65 POAG disease genes, we reviewed the available (transgenic) mouse models of POAG, which may be useful for future functional studies. Finally, we showed that the 65 (candidate) POAG genes substantially increased the specificity and sensitivity of a discriminative POAG risk test. This suggests that personal risk assessment and personalized medicine for POAG are on the horizon. Taken together, the data presented are essential to comprehend the role of genetic variation in POAG, and may provide leads to understand the pathophysiology of POAG as well as other neurodegenerative disorders, such as Alzheimers disease.


Human Molecular Genetics | 2011

Genome-wide association studies in Asians confirm the involvement of ATOH7 and TGFBR3, and further identify CARD10 as a novel locus influencing optic disc area

Chiea Chuen Khor; Wishal D. Ramdas; Eranga N. Vithana; Belinda K. Cornes; Xueling Sim; Wan-Ting Tay; Seang-Mei Saw; Yingfeng Zheng; Raghavan Lavanya; Renyi Wu; Jie Jin Wang; Paul Mitchell; André G. Uitterlinden; Fernando Rivadeneira; Yik-Ying Teo; Kee Seng Chia; Mark Seielstad; Martin L. Hibberd; Johannes R. Vingerling; Caroline C. W. Klaver; Nomdo M. Jansonius; E-Shyong Tai; Tien Yin Wong; Cornelia M. van Duijn; Tin Aung

Damage to the optic nerve (e.g. from glaucoma) has an adverse and often irreversible impact on vision. Earlier studies have suggested that the size of the optic nerve head could be governed by hereditary factors. We conducted a genome-wide association study (GWAS) on 4445 Singaporean individuals (n = 2132 of Indian and n = 2313 of Malay ancestry, respectively), with replication in Rotterdam, the Netherlands (n = 9326 individuals of Caucasian ancestry) using the most widely reported parameter for optic disc traits, the optic disc area. We identified a novel locus on chromosome 22q13.1, CARD10, which strongly associates with optic disc area in both Singaporean cohorts as well as in the Rotterdam Study (RS; rs9607469, per-allele change in optic disc area = 0.051 mm(2); P(meta) = 2.73×10(-12)) and confirmed the association between CDC7/TGFBR3 (lead single nucleotide polymorphism (SNP) rs1192415, P(meta) = 7.57×10(-17)) and ATOH7 (lead SNP rs7916697, P(meta) = 2.00 × 10(-15)) and optic disc area in Asians. This is the first Asian-based GWAS on optic disc area, identifying a novel locus for the optic disc area, but also confirming the results found in Caucasian persons suggesting that there are general genetic determinants applicable to the size of the optic disc across different ethnicities.


Ophthalmology | 2010

Incidence of Glaucomatous Visual Field Loss: A Ten-Year Follow-up from the Rotterdam Study

Monika A. Czudowska; Wishal D. Ramdas; Roger C. W. Wolfs; Albert Hofman; Paulus T. V. M. de Jong; Johannes R. Vingerling; Nomdo M. Jansonius

PURPOSE To determine the 10-year incidence of glaucomatous visual field loss (GVFL) and to investigate the influence of risk factors for open-angle glaucoma on this incidence. DESIGN Population-based cohort study. PARTICIPANTS Participants aged > or =55 years from the Rotterdam Study. METHODS Of the 7983 participants in the Rotterdam Study, 6806 underwent ophthalmic examinations at baseline (1990-1993). In 6723 of these 6806 participants (99%), both visual field screening and an assessment of the optic disc were performed. After exclusion of 93 participants with GVFL at baseline, 6630 participants at risk of developing GVFL remained. These participants underwent similar ophthalmic examinations during 2 follow-up visits (1997-1999 and 2002-2006). The incidence of GVFL was determined as an incidence rate and recalculated to a 10-year risk. Risk factors for open-angle glaucoma (age, gender, positive family history of glaucoma, baseline intraocular pressure (IOP), myopia, and baseline vertical cup-to-disc ratio [VCDR]) were assessed using Cox regression. The dependent variable was the development of GVFL. MAIN OUTCOME MEASURES Ten-year risk and incidence rates of GVFL. Hazard ratios of the above-mentioned risk factors. RESULTS Of 6630 participants, 3939 (59%) completed at least 1 follow-up examination and 2571 (39%) completed both; 108 participants developed GVFL. The overall incidence rate and 10-year risk of GVFL were 2.9 per 1000 person-years (95% confidence interval [CI], 2.4-3.5) and 2.8% (2.3-3.4), respectively. The 10-year risk increased from 1.9% at age 55 to 59 years to 6.4% at age > or =80 years (P<0.001). The incidence increased by 11% per millimeter of mercury increase in IOP (hazard ratio 1.11; 95% CI, 1.06-1.15). Male gender (1.62; 1.10-2.38), high myopia (spherical equivalent < or =-4 D myopic; 2.31; 1.19-4.49), and a baseline VCDR above the 97.5th percentile (4.64; 2.72-7.91) were associated with the development of GVFL. A positive family history was only significantly associated with the development of GVFL if IOP was removed from the model (2.0; 1.2-3.3; P = 0.012). CONCLUSIONS These data provide an estimate of the incidence of GVFL in a white population. The development of GVFL was related to higher IOP, older age, high myopia, male gender, a positive family history of glaucoma, and a larger baseline VCDR.

Collaboration


Dive into the Wishal D. Ramdas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nomdo M. Jansonius

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Roger C. W. Wolfs

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Albert Hofman

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paulus T. V. M. de Jong

Netherlands Institute for Neuroscience

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henriet Springelkamp

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Najaf Amin

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge