Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Witold M. Bloch is active.

Publication


Featured researches published by Witold M. Bloch.


Journal of the American Chemical Society | 2013

Post-synthetic structural processing in a metal-organic framework material as a mechanism for exceptional CO2/N2 selectivity

Witold M. Bloch; Ravichandar Babarao; Matthew R. Hill; Christian J. Doonan; Christopher J. Sumby

Here we report the synthesis and ceramic-like processing of a new metal-organic framework (MOF) material, [Cu(bcppm)H2O], that shows exceptionally selective separation for CO2 over N2 (ideal adsorbed solution theory, S(ads) = 590). [Cu(bcppm)H2O]·xS was synthesized in 82% yield by reaction of Cu(NO3)2·2.5H2O with the link bis(4-(4-carboxyphenyl)-1H-pyrazolyl)methane (H2bcppm) and shown to have a two-dimensional 4(4)-connected structure with an eclipsed arrangement of the layers. Activation of [Cu(bcppm)H2O] generates a pore-constricted version of the material through concomitant trellis-type pore narrowing (b-axis expansion and c-axis contraction) and a 2D-to-3D transformation (a-axis contraction) to give the adsorbing form, [Cu(bcppm)H2O]-ac. The pore contraction process and 2D-to-3D transformation were probed by single-crystal and powder X-ray diffraction experiments. The 3D network and shorter hydrogen-bonding contacts do not allow [Cu(bcppm)H2O]-ac to expand under gas loading across the pressure ranges examined or following re-solvation. This exceptional separation performance is associated with a moderate adsorption enthalpy and therefore an expected low energy cost for regeneration.


Nature Chemistry | 2014

Capturing snapshots of post-synthetic metallation chemistry in metal-organic frameworks.

Witold M. Bloch; Alexandre Burgun; Campbell J. Coghlan; Richmond Lee; Michelle L. Coote; Christian J. Doonan; Christopher J. Sumby

Post-synthetic metallation is employed strategically to imbue metal–organic frameworks (MOFs) with enhanced performance characteristics. However, obtaining precise structural information for metal-centred reactions that take place within the pores of these materials has remained an elusive goal, because of issues with high symmetry in certain MOFs, lower initial crystallinity for some chemically robust MOFs, and the reduction in crystallinity that can result from carrying out post-synthetic reactions on parent crystals. Here, we report a new three-dimensional MOF possessing pore cavities that are lined with vacant di-pyrazole groups poised for post-synthetic metallation. These metallations occur quantitatively without appreciable loss of crystallinity, thereby enabling examination of the products by single-crystal X-ray diffraction. To illustrate the potential of this platform to garner fundamental insight into metal-catalysed reactions in porous solids we use single-crystal X-ray diffraction studies to structurally elucidate the reaction products of consecutive oxidative addition and methyl migration steps that occur within the pores of the Rh-metallated MOF, 1·[Rh(CO)2][Rh(CO)2Cl2]. Obtaining precise structural information for metal-centred reactions that take place within the pores of metal–organic frameworks continues to be an elusive goal. Now, a flexible framework has been synthesized that enables the direct elucidation of the products of post-synthetic metallation reactions and subsequent chemical transformations by single-crystal X-ray crystallography. Camera image:


Journal of the American Chemical Society | 2016

Geometric Complementarity in Assembly and Guest Recognition of a Bent Heteroleptic cis-[Pd2LA2LB2] Coordination Cage

Witold M. Bloch; Yoko Abe; Julian J. Holstein; Claudia M. Wandtke; Birger Dittrich; Guido H. Clever

Due to the inherent difficulties in achieving a defined and exclusive formation of multicomponent assemblies against entropic predisposition, we present the rational assembly of a heteroleptic [Pd2LA2LB2]4+ coordination cage achieved through the geometric complementarity of two carefully designed ligands, LA and LB. With Pd(II) cations as rigid nodes, the pure distinctly angular components readily form homoleptic cages, a [Pd2LA4]4+ strained helical assembly and a [Pd4LB8]8+ box-like structure, both of which were characterized by X-ray analysis. Combined, however, the two ligands could be used to cleanly assemble a cis-[Pd2LA2LB2]4+ cage with a bent architecture. The same self-sorted product was also obtained by a quantitative cage-to-cage transformation upon mixing of the two homoleptic cages revealing the [Pd2LA2LB2]4+ assembly as the thermodynamic minimum. The structure of the heteroleptic cage was examined by ESI-MS, COSY, DOSY, and NOESY methods, the latter of which pointed toward a cis-conformation of ligands in the assembly. Indeed, DFT calculations revealed that the angular ligands and strict Pd(II) geometry strongly favor the cis-[Pd2LA2LB2]4+ species. The robust nature of the cis-[Pd2LA2LB2]4+ cage allowed us to probe the accessibility of its cavity, which could be utilized for shape recognition toward stereoisomeric guests. The ability to directly combine two different backbones in a controlled manner provides a powerful strategy for increasing complexity in the family of [Pd2L4] cages and opens up possibilities of introducing multiple functionalities into a single self-assembled architecture.


Angewandte Chemie | 2015

X‐ray Crystallography in Open‐Framework Materials

Witold M. Bloch; Neil R. Champness; Christian J. Doonan

Open-framework materials, such as metal-organic frameworks (MOFs) and coordination polymers have been widely investigated for their gas adsorption and separation properties. However, recent studies have demonstrated that their highly crystalline structures can be used to periodically organize guest molecules and non-structural metal compounds either within their pore voids or by anchoring to their framework architecture. Accordingly, the open framework can act as a matrix for isolating and elucidating the structures of these moieties by X-ray diffraction. This concept has broad scope for development as an analytical tool where obtaining single crystals of a target molecule presents a significant challenge and it additionally offers potential for obtaining insights into chemically reactive species that can be stabilized within the pore network. However, the technique does have limitations and as yet a general experimental method has not been realized. Herein we focus on recent examples in which framework materials have been utilized as a scaffold for ordering molecules for analysis by diffraction methods and canvass areas for future exploration.


Organic Letters | 2012

Biomimetic Total Synthesis of (±)-Garcibracteatone

Henry P. Pepper; Hiu C. Lam; Witold M. Bloch; Jonathan H. George

The polycyclic polyprenylated acylphloroglucinol natural product garcibracteatone has been synthesized in four steps from phloroglucinol, using a strategy based on biosynthetic speculation. The key biomimetic transformation is a cascade of 7-endo-trig and 5-exo-trig radical cyclizations followed by a terminating aromatic substitution reaction.


Angewandte Chemie | 2017

Morphological Control of Heteroleptic cis- and trans-Pd2L2Lʹ2 Cages

Witold M. Bloch; Julian J. Holstein; Wolf Hiller; Guido H. Clever

Abstract Control over the integrative self‐sorting of metallo‐supramolecular assemblies opens up possibilities for introducing increased complexity and function into a single self‐assembled architecture. Herein, the relationship between the geometry of three ligand components and morphology of three self‐sorted heteroleptic [Pd2 L 2 L′2]4+ cages is examined. Pd‐mediated assembly of two bis‐monodentate pyridyl ligands with native bite angles of 75° and 120° affords a cis‐[Pd2 L 2 L′2]4+ cage while the same reaction with two ligands with bite angles of 75° and 60° gives an unprecedented, self‐penetrating structural motif; a trans‐[Pd2(anti‐L)2 L′2]4+ heteroleptic cage with a “doubly bridged figure eight” topology. Each heteroleptic assembly can be formed by cage‐to‐cage conversion of the homoleptic precursors and morphological control of [Pd2 L 2 L′2] cages is achieved by selective ligand displacement transformations in a system of three ligands and at least six possible cage products.


CrystEngComm | 2013

Using hinged ligands to target structurally flexible copper(II) MOFs

Witold M. Bloch; Christian J. Doonan; Christopher J. Sumby

Here we report two new flexible MOFs based on a bis-pyrazolylmethane ‘hinged’ link design that favours the formation of two distinct structural nodes within the resulting 2-D and 3-D structures. The less sterically demanding ligand H2bcppm affords a 2-D layered MOF, {Cu2[CuII(NO3)2(bcppm)2](DMF)2}·2DMF (1), constructed from copper(II) paddlewheel and mononuclear octahedral copper(II) nodes. The use of a more sterically encumbered tetramethyl analogue H2bcpdmpm induces a dramatic twisting of the ligand backbone that yields a 3-D MOF{Cu4[CuI(bcpdmpm)2]2(EtOH)2(H2O)2}(NO3)2·12DMF (2) formed from a very similar mix of nodes, specifically copper(II) paddlewheel clusters and mononuclear tetrahedrally coordinated copper(I) centres. Herein we describe the crystal structures, solid-state flexibility, and gas adsorption properties of both materials.


CrystEngComm | 2016

Particle size effects in the kinetic trapping of a structurally-locked form of a flexible MOF

Oliver M. Linder-Patton; Witold M. Bloch; Campbell J. Coghlan; Kenji Sumida; Susumu Kitagawa; Christian J. Doonan; Christopher J. Sumby

The application of metal–organic frameworks (MOFs) for gas storage, molecular separations and catalysis necessitates careful consideration of the particle size and structuralisation (e.g. pelletisation, surface-anchoring) of a material. Recently, particle size has been shown to dramatically alter the physical and structural properties of certain MOFs, but overall there is limited information on how the particle size affects the properties of flexible MOFs. Here we demonstrate that the particle size of a flexible MOF, specifically the as-synthesised form of [Cu(bcppm)H2O]·S (H2bcppm = bis(4-(4-carboxyphenyl)-1H-pyrazolyl)methane, S = solvent) (1), correlates with the rate of structural reorganisation from a “kinetically-trapped”, activated 3D form of this MOF to an “open” 2D form of the structure. We also outline two methods for synthetically reducing the particle size of 1 at room temperature, using 0.1 M NaOH (for two reaction times: 0.5 and 16 h) and with the sodium salt of the ligand Na2bcppm, producing crystals of 85 ± 15, 280 ± 14 and 402 ± 41 nm, respectively.


Angewandte Chemie | 2018

Hierarchical Assembly of an Interlocked M8L16 Container

Witold M. Bloch; Julian J. Holstein; Birger Dittrich; Wolf Hiller; Guido H. Clever

Abstract The self‐assembly of eight PdII cations and sixteen phenanthrene‐derived bridging ligands with 60° bite angles yielded a novel M8L16 metallosupramolecular architecture composed of two interlocked D 4h‐symmetric barrel‐shaped containers. Mass spectrometry, NMR spectroscopy, and X‐ray analysis revealed this self‐assembled structure to be a very large “Hopf link” catenane featuring channel‐like cavities, which are occupied by NO3 − anions. The importance of the anions as catenation templates became imminent when we observed the nitrate‐triggered structural rearrangement of a mixture of M3L6 and M4L8 assemblies formed in the presence of BF4 − anions into the same interlocked molecule. Furthermore, the densely packed structure of the M8L16 catenane was exploited in the preparation of a hexyloxy‐functionalized analogue, which further self‐assembled into vesicle‐like aggregates in a reversible manner.


Philosophical Transactions of the Royal Society A | 2017

X-ray crystallographic insights into post-synthetic metalation products in a metal–organic framework

Michael.T. Huxley; Campbell J. Coghlan; Witold M. Bloch; Alexandre Burgun; Christian J. Doonan; Christopher J. Sumby

Post-synthetic modification of metal–organic frameworks (MOFs) facilitates a strategic transformation of potentially inert frameworks into functionalized materials, tailoring them for specific applications. In particular, the post-synthetic incorporation of transition-metal complexes within MOFs, a process known as ‘metalation’, is a particularly promising avenue towards functionalizing MOFs. Herein, we describe the post-synthetic metalation of a microporous MOF with various transition-metal nitrates. The parent framework, 1, contains free-nitrogen donor chelation sites, which readily coordinate metal complexes in a single-crystal to single-crystal transformation which, remarkably, can be readily monitored by X-ray crystallography. The presence of an open void surrounding the chelation site in 1 prompted us to investigate the effect of the MOF pore environment on included metal complexes, particularly examining whether void space would induce changes in the coordination sphere of chelated complexes reminiscent of those found in the solution state. To test this hypothesis, we systematically metalated 1 with first-row transition-metal nitrates and elucidated the coordination environment of the respective transition-metal complexes using X-ray crystallography. Comparison of the coordination sphere parameters of coordinated transition-metal complexes in 1 against equivalent solid- and solution-state species suggests that the void space in 1 does not markedly influence the coordination sphere of chelated species but we show notably different post-synthetic metalation outcomes when different solvents are used. This article is part of the themed issue ‘Coordination polymers and metal–organic frameworks: materials by design’.

Collaboration


Dive into the Witold M. Bloch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido H. Clever

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar

Julian J. Holstein

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar

Wolf Hiller

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birger Dittrich

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge