Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Witold Musial is active.

Publication


Featured researches published by Witold Musial.


Chemical Papers | 2010

Deposition and release of chlorhexidine from non-ionic and anionic polymer matrices

Witold Musial; Vanja Kokol; Bojana Voncina

Therapeutic activity of locally applied drugs depends on both the thermodynamic activity of the active molecule and the pharmaceutical system which enables the release of the molecule; also the vasoconstrictive activity of vessels plays an important role. In this study, the release of chlorhexidine was assessed considering the use of ionic and non-ionic polymeric carriers at temperatures in the range between 22°C and 42°C, including the temperature of 32°C as the reference surface body temperature. The obtained release rates and concentrations of chlorhexidine, loaded to methylcellulose and poly(acrylic acid) gels, were compared with respective viscositiy, pH, and conductivity of the assessed systems. The deposition patterns of chlorhexidine in the polymeric matrix were studied using energy dispersive X-ray spectrometry to evaluate the possible influence of chlorhexidine distribution in/on the carrier on the respective release rates. This study is significant for patients with various skin temperature conditions, who are required to receive local biocides applied on skin or into the oral cavity. The obtained precipitate of polyacrylic acid-chlorhexidine preparation was extensively studied to evaluate the chlorhexidine release and to develop an application in skin and dental care.


The Scientific World Journal | 2012

The Study of Release of Chlorhexidine from Preparations with Modified Thermosensitive Poly-N-isopropylacrylamide Microspheres

Witold Musial; Bojana Voncina; Janusz Pluta; Vanja Kokol

The aim of this study was to investigate and compare the release rates of chlorhexidine (CX) base entrapped in the polymeric beads of modified poly-N-isopropylacrylamides (pNIPAMs) at temperatures below and over the volume phase transition temperature (VPTT) of synthesized polymers: pNIPAM-A with terminal anionic groups resulting from potassium persulfate initiator, pNIPAM-B with cationic amidine terminal groups, and pNIPAM-C comprising anionic terminals, but with increased hydrophobicity maintained by the N-tert-butyl functional groups. The preparations, assessed in vitro below the VPTT, release an initial burst of CX at different time periods between 120 and 240 min, followed by a period of 24 h, when the rate of release remains approximately constant, approaching the zero-order kinetics; the release rates for the polymers beads are as follows: pNIPAM-C>pNIPAM-B>pNIPAM-A. The pattern of release rates at temperature over the VPTT is as follows: pNIPAM-C>pNIPAM-A>pNIPAM-B. In the presence of pNIPAM-C, the duration between the start of the release and the attained minimal inhibitory concentration (MIC) for most of the microbes, in conditions over the VPTT, increased from 60 to 90 min. The release prolongation could be ascribed to some interactions between the practically insoluble CX particle and the hydrophobic functional groups of the polymer.


Chemical Papers | 2010

Morphological characteristics of modified freeze-dried poly(N-isopropylacrylamide) microspheres studied by optical microscopy, SEM, and DLS

Witold Musial; Brian Vincent; Antoni Szumny; Bojana Voncina

Influence of the initiator and additional hydrophobic copolymer on the morphology of thermosensitive poly(N-isopropylacrylamide) (pNIPAM) microspheres, and their presumed application for the stabilization of biologically active molecules were evaluated in this study. Three different types of pNIPAM were synthesized, applying various components: PN1 is a polymer with terminal anionic groups resulting from potassium persulfate initiator; PN2 was synthesized with a 2,2′-azobis(2-methylpropionamidine) dihydrochloride initiator introducing cationic amidine terminal groups; in the PN3 polymer, anionic terminals were implemented, however, increased hydrophobicity was maintained using N-tert-butyl functional groups. Turbidity measurements of the obtained dispersions confirmed specific thermosensitivity of synthesized microspheres in the range of 32–33°C. The polymerization course was proved by infrared spectroscopy and 1H NMR assessments, whereas the size of the synthesized microspheres, expressed as planar area, was evaluated by dynamic light scattering (DLS), scanning electron microscopy (SEM) and optical microscopy (OM). The respective surface patterns of the freeze-dried microspheres were evaluated by SEM. Planar area of the synthesized macromolecules was in the range between 0.41–3.22 μm, depending on the substrates composition and the method applied for the measurements. The assessments performed in the dry stage gave higher values of the diameter and planar area of the observed microspheres. The measured diameter and planar area increased in the following order for the PN3 microspheres: DLS, OM, SEM. In the case of PN1 and PN2, the observed diameters were positioned as: DLS, SEM, OM. These differences were assigned both to varied intramolecular hydrophobic-hydrophilic interactions of the polymer chains and to the environment, i.e. low pressure in the SEM conditions and aqueous solvent in the DLS measurements. The observed gaps in the freeze-dried PN2 polymer resulted in an attempt to evaluate the application of this polymer for mechanical stabilization of certain macromolecules or nanocrystals in the size range between 10 nm and 20 nm.


Chemical Papers | 2010

Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures

Witold Musial; Vanja Kokol; Bojana Voncina

In this study, the release of lidocaine hydrochloride was assessed considering the use of both the ionic and the non-ionic polymeric carrier at temperatures of 22°C, 32°C, and 42°C; temperature of 32°C was chosen as the reference surface body temperature. The obtained release rates and respective amounts of lidocaine hydrochloride loaded both to methylcellulose beads and polyacrylic acid beads were compared with respective viscosity, pH and conductivity of the studied systems. The release of lidocaine hydrochloride from the methylcellulose system is influenced by temperature; with the increase of temperature the release rate decreases whereas the viscosity increases. In the polyacrylic acid system, release rates are lower, however, in the first stage they are slightly increasing with the increase of temperature. The final amount of released drug after 24 h increases with the temperature of the release process environment, and it is higher in case of a methylcellulose system. The maximum differences between the released amounts for methylcellulose were in the range of 15 %, whereas in case of polyacrylic acid, the difference was approximately 12 %. Thus, this research is important for patients with differentiated skin surface temperature conditions to whom a local analgesic is to be applied.


Current Issues in Pharmacy and Medical Sciences | 2015

Effect of standard and reversible arrangements of Ph.Eur./USP extraction cells during dissolution tests of calcium dobesilate in hydrogel formulation

Anna Lisik; Dorota Wójcik-Pastuszka; Maria Twarda; Ryszard Berkowski; Witold Musial

Abstract The aim of the study was to evaluate, in comparison to the reference product, the effect of the hydrophilic nonionic polymers: methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC), as well as the anionic polymers - copolymers of acrylic acid, on the release kinetics of a calcium dobesilate hydrogel formulation intended for application on the skin. In this work, we used an ointment cell for the release of the active pharmaceutical ingredient (API) from the formulations. This release was performed by employing the paddle method at 100 rpm, with the extraction cells placed in the release vessels in two different positions: with the semipermeable membrane faced to the top, or to the bottom of the vessel. Released API percentage was assessed via the validated spectrophotometric method. In the study with standard placement of the ointment cell, the release rates ranged from 4.45×10-3 min-1 for a formulation containing polyacrylic acid (PA), to 6.96 × 10-3 min-1 for a formulation based on HPMC. In the group of nonionic polymers, the release rate is higher in the case of HPMC, and lower in the case of MC. In the group of anionic polymers, the release rate is higher with the formulation of a modified copolymer of acrylic acid 11 (PC11), while release from a formulation comprising a polymer PA is rather prolonged. We found that the placement of the extraction cell does not affect the alignment of the formulations investigated in terms of the release rates in the group of non-ionic formulations: HPMC > MC, and in the group of preparation of ionic polymers: PC11 > PA.


The Scientific World Journal | 2013

Application of HPLC with ELSD Detection for the Assessment of Azelaic Acid Impurities in Liposomal Formulation

Stanisław Han; Katarzyna Karłowicz-Bodalska; Dorota Szura; Lukasz Ozimek; Witold Musial

In the course of research and development of a new pharmaceutical formulation of azelaic acid in the liposomal form, we developed a rapid and accurate method for the detection of impurities using high-performance liquid chromatography. A chromatographic column from Merck (Purospher Star RP C18, 250–4 mm (5 μm) was used in the assay, and the mobile phase gradient consisted of three phases: A—methanol : water (5 : 95) + 1.5% (v/v) acetic acid; B—water : methanol (5 : 95) + 1.5% (v/v) acetic acid; and C—chloroform. Detection of the impurities and the active substance was performed by an evaporative light-scattering detector. The method was validated for selectivity, system precision, method precision, limit of detection, and response rates. The proposed method can be used to detect impurities in the liposomal formulation of azelaic acid. The method enables separation of azelaic acid from the identified and unidentified impurities and from the excipients used in the drug form.


Chemical Papers | 2010

Morphological patterns of poly( N -isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers

Witold Musial; Vanja Kokol; Tivadar Fecko; Bojana Voncina

A number of poly(N-isopropylacrylamide) (polyNIPAM) microgels were prepared with dimethacrylate cross-linking agents of various lengths, ether and ester groups in the backbone, and pendant vinylidine functionality. These materials were characterized by examining their morphological patterns using optical and scanning electron microscopy. When ethylene glycol dimethacrylate (EGDMA) was used as a cross-linking agent, microspheres of approximately 1 μm in diameter were obtained. Diethylene glycol dimethacrylate (DEGDMA) cross-linking resulted in relatively large spherical structures (1–5 μm) as well as spherical nanostructures (200 nm). Using triethylene glycol dimethacrylate (TEGDMA) resulted in spheres with diameters between 1 μm and 3 μm. The hydrodynamic particle diameter decreased with the increasing chain length of the dimethacrylate cross-linking agents. The turbidity increased with the temperature of transition points occurring at approximately 31–32°C confirming the thermosensitivity of the obtained polymeric structures.


Molecules | 2016

Synthesis and Formulation of Thermosensitive Drug Carrier for Temperature Triggered Delivery of Naproxen Sodium

Monika Gasztych; Agnieszka A. Gola; Justyna Kobryń; Witold Musial

Nanospheres and microspheres are known as a multipurpose compounds and are used in various branches of science. Recent controlled delivery systems for drugs are also based on poly-micro and nanospheres. In our study we describe an investigation of the influence of thermosensitive polymer N-isopropylacrylamide (NIPA) on the release of the drug naproxen sodium (NS) with a hydrogel hydroxypropyl methylcellulose (HPMC) base. The hydrodynamic diameter (DH) of the obtained polymer was measured by using dynamic light scattering (DLS) at a wavelength of 678 nm. Hydrogel formulations of NS were prepared in a specific way ex tempore. NS was sprinkled on the surface of a distilled water, then polymer soluted in water was added. Afterward, HPMC was affixed to the solution. Prepared samples were stored at room temperature for 24 h. Release tests showed that modification of thevcross-linker type influenced the properties of synthesized polymeric particles. The NIPA derivatives obtained via surfactant free precipitation polymerization (SFPP) may be formulated as hydrogel preparations using HPMC. The obtained formulations presented varied half-release times, depending on the type of applied NIPA derivatives in hydrogel formulations. At 18 °C, the release rates were lower comparing to the reference HPMC hydrogel, whereas at 42 °C, the release rates were significantly higher. The synthesized thermosensitive polymers enabled temperature-triggered release of NS.


Current Issues in Pharmacy and Medical Sciences | 2015

The influence of hydrophylic polymers on the release rate of calcium dobesilate in hydrogel formulation assessed in vitro using porcine ear skin

Dorota Wójcik-Pastuszka; Anna Lisik; Maria Twarda; Ryszard Berkowski; Witold Musial

Abstract A shortage of available experimental data exists in the available bibliography on the release rate of calcium dobesilate (CD) from hydrogel formulations. Thus, the aim of the study was to evaluate the effect of selected hydrophilic nonionic polymers and anionic polymers on the release rate of CD from formulation provided for dermal application, as compared to the reference product in the market. The work utilized excised pork skin, while, Methylcellulose (MC), hydroxypropyl methylcellulose (HPMC), and anionic polymers (copolymers of acrylic acid) were used as CD carriers. The release study was executed by the pharmacopoeial paddle method, with extraction cells and fresh excised porcine skin as a membrane. CD in aqueous acceptor fluid was quantified by UV-VIS spectrometry at 300 nm. Subsequently, the kinetic curves were fitted to a zero-order kinetics model, a first-order kinetics model, a second-order kinetics model, as well as to the Higuchi model. The work saw that porcine ear skin influences the release pattern of the CD, compared to the artificial membrane. In the study, the evaluated formulations with MC, polyacrylic acid (PA) and polyacrylate crosspolymer 11 (PC-11) deliver over 60% of the active component (AC), within 250 min, through the excised porcine ear skin, to the acceptor compartment. Moreover, the release observed via porcine ear skin to the aqueous acceptor compartment is congenial to zero-order or first-order kinetics. In addition, the formulations prepared on the basis of MC and PA appear to control AC delivery, independently of actual concentration of AC.


Materials | 2018

Application of Polymerization Activator in the Course of Synthesis of N-Isopropylacrylamide Derivatives for Thermally Triggered Release of Naproxen Sodium

Monika Gasztych; Anna Kotowska; Witold Musial

Poly-N-isopropylacrylamide (polyNIPA) is an extensively studied polymer in the field of controlled drug delivery. PolyNIPA contains carbonyl and amide groups along a hydrophobic chain. In an aqueous environment, crosslinked polyNIPA forms a gel characterized by a reversible volume phase transition temperature (VPTT), in response to changes in the external environment excited by the temperature factor. NIPA-based polymers were synthesized by a surfactant-free precipitation polymerization (SFPP) method at a temperature of 70 °C using the free radical initiator potassium persulfate (KPS) and at 35 °C using redox initiator system KPS with N,N,N’,N’-tetramethylethylenediamine (TEMED). The synthesized products were evaluated via dynamic light scattering (DLS), nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR). The chemical structure, molecular mass, and hydrodynamic diameter of obtained particles, as well as the effects of synthesized polymers on the release of the active substance, naproxen sodium (NS), from hydroxypropyl methyl cellulose (HPMC)-based hydrogels were assessed. The use of the TEMED activator affected the particle size, as well as the release kinetics of NS. The insertion of TEMED into reactant mixtures may be applied to modify the release kinetics of NS from hydrogel preparations.

Collaboration


Dive into the Witold Musial's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Lisik

University of Wrocław

View shared research outputs
Top Co-Authors

Avatar

Monika Gasztych

Wrocław Medical University

View shared research outputs
Top Co-Authors

Avatar

Agnieszka A. Gola

Wrocław Medical University

View shared research outputs
Top Co-Authors

Avatar

Iwona Golonka

Wrocław Medical University

View shared research outputs
Top Co-Authors

Avatar

Maria Twarda

Wrocław Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge