Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wiyada Wongwiwat is active.

Publication


Featured researches published by Wiyada Wongwiwat.


Nature Immunology | 2016

Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus

Wanwisa Dejnirattisai; Piyada Supasa; Wiyada Wongwiwat; Alexander Rouvinski; Giovanna Barba-Spaeth; Thaneeya Duangchinda; Anavaj Sakuntabhai; Van-Mai Cao-Lormeau; Prida Malasit; Félix A. Rey; Juthathip Mongkolsapaya; Gavin R. Screaton

Zika virus (ZIKV) was discovered in 1947 and was thought to lead to relatively mild disease. The recent explosive outbreak of ZIKV in South America has led to widespread concern, with reports of neurological sequelae ranging from Guillain Barré syndrome to microcephaly. ZIKV infection has occurred in areas previously exposed to dengue virus (DENV), a flavivirus closely related to ZIKV. Here we investigated the serological cross-reaction between the two viruses. Plasma immune to DENV showed substantial cross-reaction to ZIKV and was able to drive antibody-dependent enhancement (ADE) of ZIKV infection. Using a panel of human monoclonal antibodies (mAbs) to DENV, we showed that most antibodies that reacted to DENV envelope protein also reacted to ZIKV. Antibodies to linear epitopes, including the immunodominant fusion-loop epitope, were able to bind ZIKV but were unable to neutralize the virus and instead promoted ADE. Our data indicate that immunity to DENV might drive greater ZIKV replication and have clear implications for disease pathogenesis and future vaccine programs for ZIKV and DENV.


Nature Immunology | 2015

A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus

Wanwisa Dejnirattisai; Wiyada Wongwiwat; Sunpetchuda Supasa; Xiaokang Zhang; Xinghong Dai; Alexander Rouvinski; Amonrat Jumnainsong; Carolyn Edwards; Nguyen Than Ha Quyen; Thaneeya Duangchinda; Jonathan M. Grimes; Wen-Yang Tsai; Chih-Yun Lai; Wei-Kung Wang; Prida Malasit; Jeremy Farrar; Cameron P. Simmons; Z. Hong Zhou; Félix A. Rey; Juthathip Mongkolsapaya; Gavin R. Screaton

Dengue is a rapidly emerging, mosquito-borne viral infection, with an estimated 400 million infections occurring annually. To gain insight into dengue immunity, we characterized 145 human monoclonal antibodies (mAbs) and identified a previously unknown epitope, the envelope dimer epitope (EDE), that bridges two envelope protein subunits that make up the 90 repeating dimers on the mature virion. The mAbs to EDE were broadly reactive across the dengue serocomplex and fully neutralized virus produced in either insect cells or primary human cells, with 50% neutralization in the low picomolar range. Our results provide a path to a subunit vaccine against dengue virus and have implications for the design and monitoring of future vaccine trials in which the induction of antibody to the EDE should be prioritized.


Biochemical and Biophysical Research Communications | 2009

Interaction of dengue virus envelope protein with endoplasmic reticulum-resident chaperones facilitates dengue virus production.

Thawornchai Limjindaporn; Wiyada Wongwiwat; Sansanee Noisakran; Chatchawan Srisawat; Janjuree Netsawang; Chunya Puttikhunt; Watchara Kasinrerk; Panisadee Avirutnan; Somchai Thiemmeca; Rungtawan Sriburi; Nopporn Sittisombut; Prida Malasit; Pa-thai Yenchitsomanus

Dengue virus infection is an important mosquito-borne disease and a public health problem worldwide. A better understanding of interactions between human cellular host and dengue virus proteins will provide insight into dengue virus replication and cellular pathogenesis. The glycosylated envelope protein of dengue virus, DENV E, is processed in the endoplasmic reticulum of host cells and therefore reliant on host processing functions. The complement of host ER functions involved and nature of the interactions with DENV E has not been thoroughly investigated. By employing a yeast two-hybrid assay, we found that domain III of DENV E interacts with human immunoglobulin heavy chain binding protein (BiP). The relevance of this interaction was demonstrated by co-immunoprecipitation and co-localization of BiP and DENV E in dengue virus-infected cells. Using the same approach, association of DENV E with two other chaperones, calnexin and calreticulin was also observed. Knocking-down expression of BiP, calnexin, or calreticulin by siRNA significantly decreased the production of infectious dengue virions. These results indicate that the interaction of these three chaperones with DENV E plays an important role in virion production, likely facilitating proper folding and assembly of dengue proteins.


Virus Research | 2010

Nuclear localization of dengue virus capsid protein is required for DAXX interaction and apoptosis

Janjuree Netsawang; Sansanee Noisakran; Chunya Puttikhunt; Watchara Kasinrerk; Wiyada Wongwiwat; Prida Malasit; Pa-thai Yenchitsomanus; Thawornchai Limjindaporn

Dengue virus capsid protein (DENVC) localizes to both the cytoplasm and nucleus of dengue virus-infected cells. DENV C contains three nuclear localization signals (NLS), (6)KKAR(9), (73)KKSK(76), and the bipartite signal (85)RKeigrmlnilnRRRR(100). Stable HepG2 cells constitutively expressing DENV C, DENV C (Delta 85-100) and DENV C (Delta 73-100) were constructed to clarify whether nuclear translocation of DENV C affected apoptosis in liver cell line. While the wild-type DENV C could translocate into the nuclei of HepG2 cells, the mutant DENV Cs were restricted to the cytoplasm. The loss of nuclear localization of both mutant DENV Cs resulted in the disruption of their interactions with the apoptotic protein Daxx. Interestingly, upon treatment with anti-Fas antibody, the HepG2 cells expressing the wild-type DENV C showed significantly more apoptosis compared with the HepG2 cells expressing either mutant DENV C. To identify the amino acids required for DAXX interaction and apoptosis, substitution mutations either (K73A/K74A) or (R85A/K86A) were introduced into the C-terminal region of DENV C, and tested whether these mutations affected its interaction with Daxx and apoptosis. The results demonstrate that (73)KK and (85)RK of DENV C are important for its nuclear localization, interaction with DAXX and induction of apoptosis. This work is the first to demonstrate that nuclear localization of DENV C is required for DAXX interaction and apoptosis.


Journal of Immunology | 2012

Structural analysis of a dengue cross-reactive antibody complexed with envelope domain III reveals the molecular basis of cross-reactivity.

Claire M. Midgley; Aleksandra Flanagan; Hai Bac Tran; Wanwisa Dejnirattisai; Kriangkrai Chawansuntati; Amonrat Jumnainsong; Wiyada Wongwiwat; Thaneeya Duangchinda; Juthathip Mongkolsapaya; Jonathan M. Grimes; Gavin R. Screaton

Dengue virus infections are still increasing at an alarming rate in tropical and subtropical countries, underlying the need for a dengue vaccine. Although it is relatively easy to generate Ab responses to dengue virus, low avidity or low concentrations of Ab may enhance infection of FcR-bearing cells with clinical impact, posing a challenge to vaccine production. In this article, we report the characterization of a mAb, 2H12, which is cross-reactive to all four serotypes in the dengue virus group. Crystal structures of 2H12-Fab in complex with domain III of the envelope protein from three dengue serotypes have been determined. 2H12 binds to the highly conserved AB loop of domain III of the envelope protein that is poorly accessible in the mature virion. 2H12 neutralization varied between dengue serotypes and strains; in particular, dengue serotype 2 was not neutralized. Because the 2H12-binding epitope was conserved, this variation in neutralization highlights differences between dengue serotypes and suggests that significant conformational changes in the virus must take place for Ab binding. Surprisingly, 2H12 facilitated little or no enhancement of infection. These data provide a structural basis for understanding Ab neutralization and enhancement of infection, which is crucial for the development of future dengue vaccines.


Biochemical and Biophysical Research Communications | 2008

Identification of human hnRNP C1/C2 as a dengue virus NS1-interacting protein

Sansanee Noisakran; Suchada Sengsai; Visith Thongboonkerd; Rattiyaporn Kanlaya; Supachok Sinchaikul; Shui-Tein Chen; Chunya Puttikhunt; Watchara Kasinrerk; Thawornchai Limjindaporn; Wiyada Wongwiwat; Prida Malasit; Pa-thai Yenchitsomanus

Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells.


British Journal of Haematology | 2006

Impaired interaction of α-haemoglobin-stabilising protein with α-globin termination mutant in a yeast two-hybrid system

Chairat Turbpaiboon; Thawornchai Limjindaporn; Wiyada Wongwiwat; Yaowalak U-Pratya; Noppadol Siritanaratkul; Pa-thai Yenchitsomanus; Sarawut Jitrapakdee; Prapon Wilairat

α‐Thalassaemia caused by α‐globin gene termination codon mutations (αT‐globin) has been explained by their inherent mRNA instability and by oxidative damage arising from the presence of membrane‐bound αT‐globin chains. To better understand the latter phenomenon, a yeast two‐hybrid system was used to assay the interaction between αT‐globin and its molecular chaperone, α‐haemoglobin‐stabilising protein (AHSP) and impaired binding of αT‐globin with AHSP compared with αwild‐type‐globin was observed.


Virus Research | 2011

Cell death gene expression profile: role of RIPK2 in dengue virus-mediated apoptosis.

Atthapan Morchang; Umpa Yasamut; Janjuree Netsawang; Sansanee Noisakran; Wiyada Wongwiwat; Pucharee Songprakhon; Chatchawan Srisawat; Chunya Puttikhunt; Watchara Kasinrerk; Prida Malasit; Pa-thai Yenchitsomanus; Thawornchai Limjindaporn

Dengue virus (DENV) is a major emerging arthropod-borne pathogen, which infects individuals in both subtropical and tropical regions. Patients with DENV infection exhibit evidence of hepatocyte injury. However, the mechanisms of hepatocyte injury are unclear. Therefore we examined the expression of cell death genes during DENV-infection of HepG2 cells using real-time PCR arrays. The expression changes were consistent with activation of apoptosis and autophagy. Expression of the up-regulated genes, including RIPK2, HRK, TGF-β, PERK, and LC3B, was confirmed by quantitative real-time PCR. RIPK2 belongs to the receptor-interacting protein family of serine/threonine protein kinases, which is a crucial mediator of multiple stress responses that leads to the activation of caspase, NF-κB and MAP kinases including JNK and p38. RIPK2 activity is inhibited by the p38 MAPK pathway inhibitor SB203580. The effect of SB203580 on RIPK2 expression and DENV-induced apoptosis was tested in DENV-infected HepG2 cells. The inhibition of RIPK2 expression by SB203580 significantly reduced apoptosis. SB203580 also significantly reduced DENV capsid protein (DENVC)-mediated apoptosis. Suppression of endogenous RIPK2 in DENV-infected HepG2 cells by small interfering RNA (siRNA) significantly decreased apoptosis suggesting for the first time that RIPK2 plays a role in DENV-mediated apoptosis.


Nature Immunology | 2017

Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection

Estefania Fernandez; Wanwisa Dejnirattisai; Bin Cao; Suzanne Scheaffer; Piyada Supasa; Wiyada Wongwiwat; Prabagaran Esakky; Andrea Drury; Juthathip Mongkolsapaya; Kelle H. Moley; Indira U. Mysorekar; Gavin R. Screaton; Michael S. Diamond

The Zika virus (ZIKV) epidemic has resulted in congenital abnormalities in fetuses and neonates. Although some cross-reactive dengue virus (DENV)-specific antibodies can enhance ZIKV infection in mice, those recognizing the DENV E-dimer epitope (EDE) can neutralize ZIKV infection in cell culture. We evaluated the therapeutic activity of human monoclonal antibodies to DENV EDE for their ability to control ZIKV infection in the brains, testes, placentas, and fetuses of mice. A single dose of the EDE1-B10 antibody given 3 d after ZIKV infection protected against lethality, reduced ZIKV levels in brains and testes, and preserved sperm counts. In pregnant mice, wild-type or engineered LALA variants of EDE1-B10, which cannot engage Fcg receptors, diminished ZIKV burden in maternal and fetal tissues, and protected against fetal demise. Because neutralizing antibodies to EDE have therapeutic potential against ZIKV, in addition to their established inhibitory effects against DENV, it may be possible to develop therapies that control disease caused by both viruses.The Zika virus (ZIKV) epidemic has resulted in congenital abnormalities in fetuses and neonates. Although some cross-reactive DENV antibodies can enhance ZIKV infection in mice, those recognizing the E-dimer epitope (EDE) can neutralize ZIKV infection in cell culture. We evaluated the therapeutic activity of human EDE monoclonal antibodies (mAbs) for their ability to control ZIKV infection in the brains, testes, placentas, and fetuses of mice. A single dose of EDE1-B10 antibody given three days after infection protected against lethality, reduced ZIKV levels in brains and testes, and preserved sperm counts. In pregnant mice, wild-type or engineered LALA variants of EDE1-B10, which cannot engage Fc-γ receptors, diminished ZIKV burden in maternal and fetal tissues, and protected against fetal demise. As neutralizing EDE antibodies, in addition to their established inhibitory effects against DENV, have therapeutic potential against ZIKV, it may be possible to develop therapies that control disease caused by both viruses.


Nature Immunology | 2015

Erratum: A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus (Nature Immunology (2015) 16 (170-177))

Wanwisa Dejnirattisai; Wiyada Wongwiwat; Sunpetchuda Supasa; Xiaokang Zhang; Xinghong Dai; Alexander Rouvinsky; Amonrat Jumnainsong; Carolyn Edwards; Nguyen Than Ha Quyen; Thaneeya Duangchinda; Jonathan M. Grimes; Wen Yang Tsai; Chih Yun Lai; Wei-Kung Wang; Prida Malasit; Jeremy Farrar; Cameron P. Simmons; Z. Hong Zhou; Félix A. Rey; Juthathip Mongkolsapaya; Gavin R. Screaton

Wanwisa Dejnirattisai, Wiyada Wongwiwat, Sunpetchuda Supasa, Xiaokang Zhang, Xinghong Dai, Alexander Rouvinsky, Amonrat Jumnainsong, Carolyn Edwards, Nguyen Than Ha Quyen, Thaneeya Duangchinda, Jonathan M Grimes, Wen-Yang Tsai, Chih-Yun Lai, Wei-Kung Wang, Prida Malasit, Jeremy Farrar, Cameron P Simmons, Z Hong Zhou, Felix A Rey, Juthathip Mongkolsapaya & Gavin R Screaton Nat. Immunol. 16, 170–177 (2015); published online 15 December 2014; corrected after print 27 February 2015

Collaboration


Dive into the Wiyada Wongwiwat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunya Puttikhunt

Thailand National Science and Technology Development Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sansanee Noisakran

Thailand National Science and Technology Development Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge