Woan-Sub Kim
Hokkaido University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Woan-Sub Kim.
Biometals | 2004
Woan-Sub Kim; Midori Ohashi; Tetsuya Tanaka; Haruto Kumura; Gur-Yoo Kim; Ill-Kyung Kwon; Juhn-Su Goh; Kei-ichi Shimazaki
We investigated the effects of lactoferrin on the growth of L. acidophilus CH-2, Bifidobacterium breve ATCC 15700, B. longum ATCC 15707, B. infantis ATCC 15697, and B. bifidum ATCC 15696. The growth of L. acidophilus was stimulated by bovine holo-lactoferrin but not by apo-lactoferrin. With bifidobacteria, bovine lactoferrin stimulated growth of three strains: B. breve, B. infantis and B. bifidum under certain conditions. Both apoprotein and holoprotein had similar effects. However, B. longum growth was not affected by lactoferrin. Thus, the mechanism of stimulating growth of bifidobacteria may be different from that of L. acidophilus. By far-western blotting using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin, lactoferrin-binding proteins were detected in the membrane protein fraction of L. acidophilus, B. bifidum, B. infantis and B. breve. The molecular weights of lactoferrin-binding proteins of L. acidophilus were estimated from SDS-polyacrylamide gel electrophoresis to be 27, 41 and 67 kDa, and those of the three bifidobacterial strains were estimated to be 67–69 kDa. However, no such lactoferrin-binding components were detected in the membrane fraction of B. longum. It is interesting that the appearance of lactoferrin-binding proteins in the membrane fraction of these species corresponds to their growth stimulation by lactoferrin.
Anaerobe | 2009
Md. Morshedur Rahman; Woan-Sub Kim; Toshiaki Ito; Haruto Kumura; Kei-ichi Shimazaki
Lactoferrin, a major whey protein of human milk, is considered as growth promoter for bifidobacteria, the predominant microorganisms of human intestine. In the present study, in vitro growth promotion and cell binding ability of bovine lactoferrin to several strains of Bifidobacterium longum have been demonstrated. A dose-dependent as well as strain-dependent growth promotion effect by lactoferrin was observed. Cell binding ability of lactoferrin was inspected under an inverted confocal laser scanning microscope by incubation bacterial cells with biotinylated bovine lactoferrin and FITC-conjugated avidin. Fluorescence staining showed bovine lactoferrin binding to all tested strains. A lactoferrin-binding protein with a molecular weight of approximately 67 kDa was also detected in the extracted membrane and cytosolic fraction of each B. longum strain by far-Western blot technique using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin. Based on these results, we suggest that existence of lactoferrin-binding protein could be a common characteristic in bifidobacteria. It can also be hypothesized that lactoferrin-binding protein in bifidobacteria is not only involved in growth stimulation mechanism but also could play different roles.
Anaerobe | 2008
Md. Morshedur Rahman; Woan-Sub Kim; Haruto Kumura; Kei-ichi Shimazaki
Changes in autoaggregation ability and surface hydrophobicity of bifidobacteria with addition of bovine lactoferrin in liquid media were investigated. Lactoferrin addition caused loss of autoaggregation ability, disappearance of microscopic clusters and produced consistent turbidity in the cultured medium compared with control. Similar outcomes with addition of bovine lactoferrin hydrolysates (pepsin), bovine transferrin or ovotransferrin suggested that the effect is not lactoferrin-specific. On the other hand, addition of proteins, except bovine transferrin, did not alter surface hydrophobicity. These results indicate that one or more surface components involved in autoaggregation of bifidobacteria are proteins.
Bioscience, Biotechnology, and Biochemistry | 2006
Woan-Sub Kim; Kei-ichi Shimazaki; Tomohiro Tamura
A Rhodococcus erythropolis expression system for the bovine lactoferrin C-lobe was constructed. The DNA fragments encoding the BLF C-lobe were amplified and cloned into vector pTip LCH1.2. R. erythropolis carrying the pTip-C-lobe was cultured at 30 °C with shaking, and expression of the rBLF C-lobe was induced by adding 1 μg/ml (final concentration) thiostrepton. The rBLF C-lobe was isolated in native and denatured (8 M urea) form by Ni-NTA affinity chromatography. To obtain a bioactive rBLF C-lobe, the protein isolated in the denatured form was refolded by stepwise dialysis against refolding buffers. The antibacterial activity of the rBLF C-lobe was tested by the filter-disc plate assay method. The refolded rBLF C-lobe demonstrated antibacterial activity against selected strains of Escherichia coli.
Applied Biochemistry and Microbiology | 2008
Md. Morshedur Rahman; Woan-Sub Kim; Toshiaki Ito; Haruto Kumura; Kei-ichi Shimazaki
In the present study, lactoferrin binding to bifidobacteria and detection of lactoferrin-binding protein in membrane fractions of several bifidobacteria have been demonstrated. This is the first report showing the binding of bovine lactoferrin to four Bifidobacterium spp. (B. infantis, B. breve, B. bifidum, and B. longum) incubated with biotinylated lactoferrin and fluorescein-conjugated avidin and observed under an inverted confocal laser scanning microscope. Fluorescence staining showed lactoferrin binding at the pole of the bacterial cells. A lactoferrin-binding protein with a molecular weight of approximately 67 kDa was also detected in the membrane fraction of Bifidobacterium spp. by far-western blotting technique using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin. Based on the results of this and previously reported studies, we suggest that binding of lactoferrin to Bifidobacterium longum is strain dependent.
Biotechnology Letters | 2009
Morshedur Rahman; Woan-Sub Kim; Haruto Kumura; Kei-ichi Shimazaki
Bovine lactoferrin promotes bifidobacterial growth. Its binding to bifidobacteria is thought to be responsible for such action. After separating the bovine lactoferrin half molecule and extraction of surface proteins from bifidobacteria, binding profiles were observed by immunoblotting. No binding appeared when lactoferrin C-lobe was reacted with the cell surface proteins on a polyvinylidene difluoride membrane. Conversely, a 50-kDa band appeared when the surface proteins were reacted with either intact or nicked bovine lactoferrin. This result strongly suggests that the binding region could be lactoferrin N-lobe. Interestingly, despite the absence of binding, C-lobe enhanced bifidobacterial growth.
Korean Journal for Food Science of Animal Resources | 2016
Woan-Sub Kim; Pyeung-Hyeun Kim; Kei-ichi Shimazaki
The antimicrobial activity of bovine lactoferrin hydrolysates (bLFH) was measured against Pseudomonas strains (P. syringae and P. fluorescens) in vitro. To compare susceptibility to bLFH, minimal inhibitory concentration (MIC) values were determined using chemiluminescence assays and paper disc plate assays. Antimicrobial effect against P. fluorescens was not observed by either assay, suggesting that bLFH did not exhibit antimicrobial activity against P. fluorescens. However, a significant inhibition of P. syringae growth was observed in the presence of bLFH. The addition of bLFH in liquid or solid medium inhibited growth of P. syringae in a dose-dependent manner. Furthermore, a bLFH peptide with antimicrobial activity toward P. syringae was isolated and identified. The N-terminal amino acid sequences of thus obtained antimicrobial bLFH peptides were analyzed by a protein sequencer and were found to be Leu-Arg-Ile-Pro-Ser-Lys-Val-Asp-Ser-Ala and Phe-Lys-Cys-Arg-Arg-Trp-Gln-Trp-Arg-Met. The latter peptide sequence is known to be characteristic of lactoferricin. Therefore, in the present study, we identified a new antimicrobial peptide against P. syringae, present within the N-terminus and possessing the amino acid sequence of Leu-Arg-Ile-Pro-Ser-Lys-Val-Asp-Ser-Ala.
Cellular & Molecular Immunology | 2016
Jeong-Min Lee; Young-Saeng Jang; Bo-Ra Jin; Sun-Jin Kim; Hyeon-Jin Kim; Bo-Eun Kwon; Hyun-Jeong Ko; Sung-il Yoon; Geun-Shik Lee; Woan-Sub Kim; Goo-Young Seo; Pyeung-Hyeun Kim
Lactoferrin (LF) and retinoic acid (RA) are enriched in colostrum, milk, and mucosal tissues. We recently showed that LF-induced IgA class switching through binding to betaglycan (transforming growth factor-beta receptor III, TβRIII) and activation of canonical TGF-β signaling. We investigated the combined effect of LF and RA on the overall IgA response. An increase in IgA production by LF was further augmented by RA. This combination effect was also evident in Ig germ-line α (GLα) transcription and GLα promoter activity, indicating that LF in cooperation with RA increased IgA isotype switching. We subsequently found that RA enhanced TβRIII expression and that this increase contributed to LF-stimulated IgA production. In addition to the IgA response, LF and RA in combination also enhanced the expression of the gut-homing molecules C-C chemokine receptor 9 (CCR9) and α4β7 on B cells. Finally, peroral administration of LF and RA enhanced the frequency of CCR9+IgA+ plasma cells in the lamina propria. Taken together, these results suggest that LF in cooperation with RA can contribute to the establishment of gut IgA responses.
Korean Journal for Food Science of Animal Resources | 2016
Woan-Sub Kim; Midori Ohashi; Kei-ichi Shimazaki
Lactoferrin is a glycoprotein with various biological effects, with antibacterial activity being one of the first effects reported. This glycoprotein suppresses bacterial growth through bacteriostatic or bactericidal action. It also stimulates the growth of certain kinds of bacteria such as lactic acid bacteria and bifidobacteria. In this study, Asn-Leu-Asn-Arg was selected and chemically synthesized based on the partial sequences of bovine lactoferrin tryptic fragments. Synthetic Asn-Leu-Asn-Arg suppressed the growth of Pseudomonas fluorescens, P. syringae and Escherichia coli. P. fluorescens is a major psychrotrophic bacteria found in raw and pasteurized milk, which decreases milk quality. P. syringae is a harmful infectious bacterium that damages plants. However, synthetic Asn-Leu-Asn-Arg did not inhibit the growth of Lactobacillus acidophilus. It is expected that this synthetic peptide would be the first peptide sequence from the bovine lactoferrin C-lobe that shows antibacterial activity.
World Journal of Microbiology & Biotechnology | 2008
Md. Morshedur Rahman; Woan-Sub Kim; Haruto Kumura; Kei-ichi Shimazaki
Collaboration
Dive into the Woan-Sub Kim's collaboration.
Obihiro University of Agriculture and Veterinary Medicine
View shared research outputsObihiro University of Agriculture and Veterinary Medicine
View shared research outputs