Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wojciech Branicki is active.

Publication


Featured researches published by Wojciech Branicki.


Molecular Ecology | 2006

Ecological factors influence population genetic structure of European grey wolves

Malgorzata Pilot; Włodzimierz Jędrzejewski; Wojciech Branicki; Vadim E. Sidorovich; Bogumiła Jędrzejewska; Krystyna Stachura; Stephan M. Funk

Although the mechanisms controlling gene flow among populations are particularly important for evolutionary processes, they are still poorly understood, especially in the case of large carnivoran mammals with extensive continuous distributions. We studied the question of factors affecting population genetic structure in the grey wolf, Canis lupus, one of the most mobile terrestrial carnivores. We analysed variability in mitochondrial DNA and 14 microsatellite loci for a sample of 643 individuals from 59 localities representing most of the continuous wolf range in Eastern Europe. We tested an array of geographical, historical and ecological factors to check whether they may explain genetic differentiation among local wolf populations. We showed that wolf populations in Eastern Europe displayed nonrandom spatial genetic structure in the absence of obvious physical barriers to movement. Neither topographic barriers nor past fragmentation could explain spatial genetic structure. However, we found that the genetic differentiation among local populations was correlated with climate, habitat types, and wolf diet composition. This result shows that ecological processes may strongly influence the amount of gene flow among populations. We suggest natal‐habitat‐biased dispersal as an underlying mechanism linking population ecology with population genetic structure.


Forensic Science International-genetics | 2013

The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA

Susan Walsh; Fan Liu; Andreas Wollstein; Leda Kovatsi; Arwin Ralf; Agnieszka Kosiniak-Kamysz; Wojciech Branicki; Manfred Kayser

Recently, the field of predicting phenotypes of externally visible characteristics (EVCs) from DNA genotypes with the final aim of concentrating police investigations to find persons completely unknown to investigating authorities, also referred to as Forensic DNA Phenotyping (FDP), has started to become established in forensic biology. We previously developed and forensically validated the IrisPlex system for accurate prediction of blue and brown eye colour from DNA, and recently showed that all major hair colour categories are predictable from carefully selected DNA markers. Here, we introduce the newly developed HIrisPlex system, which is capable of simultaneously predicting both hair and eye colour from DNA. HIrisPlex consists of a single multiplex assay targeting 24 eye and hair colour predictive DNA variants including all 6 IrisPlex SNPs, as well as two prediction models, a newly developed model for hair colour categories and shade, and the previously developed IrisPlex model for eye colour. The HIrisPlex assay was designed to cope with low amounts of template DNA, as well as degraded DNA, and preliminary sensitivity testing revealed full DNA profiles down to 63pg input DNA. The power of the HIrisPlex system to predict hair colour was assessed in 1551 individuals from three different parts of Europe showing different hair colour frequencies. Using a 20% subset of individuals, while 80% were used for model building, the individual-based prediction accuracies employing a prediction-guided approach were 69.5% for blond, 78.5% for brown, 80% for red and 87.5% for black hair colour on average. Results from HIrisPlex analysis on worldwide DNA samples imply that HIrisPlex hair colour prediction is reliable independent of bio-geographic ancestry (similar to previous IrisPlex findings for eye colour). We furthermore demonstrate that it is possible to infer with a prediction accuracy of >86% if a brown-eyed, black-haired individual is of non-European (excluding regions nearby Europe) versus European (including nearby regions) bio-geographic origin solely from the strength of HIrisPlex eye and hair colour probabilities, which can provide extra intelligence for future forensic applications. The HIrisPlex system introduced here, including a single multiplex test assay, an interactive tool and prediction guide, and recommendations for reporting final outcomes, represents the first tool for simultaneously establishing categorical eye and hair colour of a person from DNA. The practical forensic application of the HIrisPlex system is expected to benefit cases where other avenues of investigation, including STR profiling, provide no leads on who the unknown crime scene sample donor or the unknown missing person might be.


Journal of Forensic Sciences | 2003

Validation of Cytochrome b Sequence Analysis as a Method of Species Identification

Wojciech Branicki; Tomasz Kupiec; Ryszard Pawlowski

One of the stages of dealing with biological material submitted to forensic laboratories is species identification. The aim of the present work was to validate and assess the possibility of applying sequence analysis of the region coding cytochrome b as a method of species identification in the field of forensic science. DNA originating from individuals from major phyla of vertebrates was isolated by the organic method from various specimens. Extracted DNA was subjected to PCR and direct cycle sequencing using a universal pair of primers. The validation process, performed according to TWGDAM recommendations, revealed that the technique is a very sensitive and reliable method of species identification allowing analysis of tiny amounts of material and also degraded material, and can be useful in the field of forensic genetics. The case example presented here, concerning the determination of species origin of biological evidence collected from fatal road accident, confirms that analysis can be carried out even when there is no reference sample, and the sequences obtained can be assessed through analysis of their similarity to sequences for cytochrome b present in DNA databases.


Human Genetics | 2002

Homogeneity and distinctiveness of Polish paternal lineages revealed by Y chromosome microsatellite haplotype analysis

Rafał Płoski; Marcin Wozniak; Ryszard Pawlowski; Dorota Monies; Wojciech Branicki; Tomasz Kupiec; Ate D. Kloosterman; Tadeusz Dobosz; Elena Bosch; Magdalena Nowak; Rüdiger Lessig; Mark A. Jobling; Lutz Roewer; Manfred Kayser

Abstract. Different regional populations from Poland were studied in order to assess the genetic heterogeneity within Poland, investigate the genetic relationships with other European populations and provide a population-specific reference database for anthropological and forensic studies. Nine Y-chromosomal microsatellites were analysed in a total of 919 unrelated males from six regions of Poland and in 1,273 male individuals from nine other European populations. AMOVA revealed that all of the molecular variation in the Polish dataset is due to variation within populations, and no variation was detected among populations of different regions of Poland. However, in the non-Polish European dataset 9.3% (P<0.0001) of the total variation was due to differences among populations. Consequently, differences in RST-values between all possible pairs of Polish populations were not statistically significant, whereas significant differences were observed in nearly all comparisons of Polish and non-Polish European populations. Phylogenetic analyses demonstrated tight clustering of Polish populations separated from non-Polish groups. Population clustering based on Y-STR haplotypes generally correlates well with the geography and history of the region. Thus, our data are consistent with the assumption of homogeneity of present-day paternal lineages within Poland and their distinctiveness from other parts of Europe, at least in respect to their Y-STR haplotypes. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00439-002-0728-0.


Human Genetics | 2011

Model-based prediction of human hair color using DNA variants

Wojciech Branicki; Fan Liu; Kate van Duijn; Jolanta Draus-Barini; Ewelina Pośpiech; Susan Walsh; Tomasz Kupiec; Anna Wojas-Pelc; Manfred Kayser

Predicting complex human phenotypes from genotypes is the central concept of widely advocated personalized medicine, but so far has rarely led to high accuracies limiting practical applications. One notable exception, although less relevant for medical but important for forensic purposes, is human eye color, for which it has been recently demonstrated that highly accurate prediction is feasible from a small number of DNA variants. Here, we demonstrate that human hair color is predictable from DNA variants with similarly high accuracies. We analyzed in Polish Europeans with single-observer hair color grading 45 single nucleotide polymorphisms (SNPs) from 12 genes previously associated with human hair color variation. We found that a model based on a subset of 13 single or compound genetic markers from 11 genes predicted red hair color with over 0.9, black hair color with almost 0.9, as well as blond, and brown hair color with over 0.8 prevalence-adjusted accuracy expressed by the area under the receiver characteristic operating curves (AUC). The identified genetic predictors also differentiate reasonably well between similar hair colors, such as between red and blond-red, as well as between blond and dark-blond, highlighting the value of the identified DNA variants for accurate hair color prediction.


Annals of Human Genetics | 2009

Interactions Between HERC2, OCA2 and MC1R May Influence Human Pigmentation Phenotype

Wojciech Branicki; Urszula Brudnik; Anna Wojas-Pelc

Human pigmentation is a polygenic trait which may be shaped by different kinds of gene–gene interactions. Recent studies have revealed that interactive effects between HERC2 and OCA2 may be responsible for blue eye colour determination in humans. Here we performed a population association study, examining important polymorphisms within the HERC2 and OCA2 genes. Furthermore, pooling these results with genotyping data for MC1R, ASIP and SLC45A2 obtained for the same population sample we also analysed potential genetic interactions affecting variation in eye, hair and skin colour. Our results confirmed the association of HERC2 rs12913832 with eye colour and showed that this SNP is also significantly associated with skin and hair colouration. It is also concluded that OCA2 rs1800407 is independently associated with eye colour. Finally, using various approaches we were able to show that there is an interaction between MC1R and HERC2 in determination of skin and hair colour in the studied population sample.


BMC Evolutionary Biology | 2010

Phylogeographic history of grey wolves in Europe

Malgorzata Pilot; Wojciech Branicki; Włodzimierz Jędrzejewski; Jacek Goszczyński; Bogumiła Jędrzejewska; Ihor Dykyy; Maryna Shkvyrya; Elena Tsingarska

BackgroundWhile it is generally accepted that patterns of intra-specific genetic differentiation are substantially affected by glacial history, population genetic processes occurring during Pleistocene glaciations are still poorly understood. In this study, we address the question of the genetic consequences of Pleistocene glaciations for European grey wolves. Combining our data with data from published studies, we analysed phylogenetic relationships and geographic distribution of mitochondrial DNA haplotypes for 947 contemporary European wolves. We also compared the contemporary wolf sequences with published sequences of 24 ancient European wolves.ResultsWe found that haplotypes representing two haplogroups, 1 and 2, overlap geographically, but substantially differ in frequency between populations from south-western and eastern Europe. A comparison between haplotypes from Europe and other continents showed that both haplogroups are spread throughout Eurasia, while only haplogroup 1 occurs in contemporary North American wolves. All ancient wolf samples from western Europe that dated from between 44,000 and 1,200 years B.P. belonged to haplogroup 2, suggesting the long-term predominance of this haplogroup in this region. Moreover, a comparison of current and past frequencies and distributions of the two haplogroups in Europe suggested that haplogroup 2 became outnumbered by haplogroup 1 during the last several thousand years.ConclusionsParallel haplogroup replacement, with haplogroup 2 being totally replaced by haplogroup 1, has been reported for North American grey wolves. Taking into account the similarity of diets reported for the late Pleistocene wolves from Europe and North America, the correspondence between these haplogroup frequency changes may suggest that they were associated with ecological changes occurring after the Last Glacial Maximum.


Forensic Science International-genetics | 2015

Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science

Renata Zbieć-Piekarska; Magdalena Spólnicka; Tomasz Kupiec; Żanetta Makowska; Anna Spas; Agnieszka Parys-Proszek; Krzysztof Kucharczyk; Rafał Płoski; Wojciech Branicki

Age estimation in forensic investigations may complement the prediction of externally visible characteristics and the inference of biogeographical ancestry, thus allowing a better description of an unknown individual. Multiple CpG sites that show linear correlation between age and degree of DNA methylation have been identified in the human genome, providing a selection of candidates for age prediction. In this study, we optimized an assay based on bisulfite conversion and pyrosequencing of 7 CpG sites located in the ELOVL2 gene. Examination of 303 blood samples collected from individuals aged 2-75 years allowed selection of the most informative site, explaining 83% of variation in age. The final linear regression model included two CpG sites in ELOVL2 and enabled age prediction with R(2)=0.859, prediction error=6.85 and mean absolute deviation MAD=5.03. Examination of a testing set of 124 blood samples (MAD=5.75) showed that 68.5% of samples were correctly predicted, assuming that chronological and predicted ages matched ± 7 years. It was found that the ELOVL2 methylation status in bloodstains had not changed significantly after 4 weeks of storage in room temperature conditions. Analysis of 45 bloodstains deposited on tissue paper after 5, 10 and 15 years of storage in room conditions indicated that although a gradual decrease of positive PCR results was observed, the general age prediction success rate remained similar and equaled 60-78%. The obtained results show that the ELOVL2 locus provides a very good source of information about human chronological age based on analysis of blood, including bloodstains, and it may constitute a powerful and reliable predictor in future forensic age estimation models.


Forensic Science International-genetics | 2015

Development of a forensically useful age prediction method based on DNA methylation analysis

Renata Zbieć-Piekarska; Magdalena Spólnicka; Tomasz Kupiec; Agnieszka Parys-Proszek; Żanetta Makowska; Anna Pałeczka; Krzysztof Kucharczyk; Rafał Płoski; Wojciech Branicki

Forensic DNA phenotyping needs to be supplemented with age prediction to become a relevant source of information on human appearance. Recent progress in analysis of the human methylome has enabled selection of multiple candidate loci showing linear correlation with chronological age. Practical application in forensic science depends on successful validation of these potential age predictors. In this study, eight DNA methylation candidate loci were analysed using convenient and reliable pyrosequencing technology. A total number of 41 CpG sites was investigated in 420 samples collected from men and women aged from 2 to 75 years. The study confirmed correlation of all the investigated markers with human age. The five most significantly correlated CpG sites in ELOVL2 on 6p24.2, C1orf132 on 1q32.2, TRIM59 on 3q25.33, KLF14 on 7q32.3 and FHL2 on 2q12.2 were chosen to build a prediction model. This restriction allowed the technical analysis to be simplified without lowering the prediction accuracy significantly. Model parameters for a discovery set of 300 samples were R(2)=0.94 and the standard error of the estimate=4.5 years. An independent set of 120 samples was used to test the model performance. Mean absolute deviation for this testing set was 3.9 years. The number of correct predictions ±5 years achieved a very high level of 86.7% in the age category 2-19 and gradually decreased to 50% in the age category 60-75. The prediction model was deterministic for individuals belonging to these two extreme age categories. The developed method was implemented in a freely available online age prediction calculator.


Acta Theriologica | 2005

Genetic diversity and relatedness within packs in an intensely hunted population of wolvesCanis lupus

Włodzimierz Jędrzejewski; Wojciech Branicki; Claudia Veit; Ivica Međugorac; Malgorzata Pilot; Aleksei N. Bunevich; Bogumiła Jędrzejewska; Krzysztof Schmidt; Jörn Theuerkauf; Henryk Okarma; Roman Gula; Lucyna Szymura; Martin Förster

A population of grey wolvesCanis lupus Linnaeus, 1758 inhabiting Białowieża Primeval Forest (BPF) on the Polish-Belarussian border has recovered after near extermination in the 1970s. Currently, it is intensively hunted in the Belarussian part of BPF and protected in the Polish part. We used a combination of molecular analysis, radiotracking, and field observation to study genetic diversity of the population after natural recolonisation and the consequences of heavy hunting for the genetic composition and social structure of wolf packs. Both microsatellite and mtDNA analyses revealed high genetic diversity. For 29 individuals and 20 microsatellite loci, the mean expected heterozygosity was 0.733. Four mtDNA haplotypes were found. Three of them had earlier been described from Europe. Their geographic distribution suggests that wolves recolonising BPF immigrated mainly from the north-east, and less effectively from the east and south-east. We traced the composition of 6 packs for a total of 26 pack-years. Packs were family units (a breeding pair with offspring) with occasional adoption of unrelated adult males, which occurred more frequently in packs living in the Belarussian part of the BPF, due to heavy hunting and poaching. Breeding pairs were half-sibs or unrelated wolves. Pair-bonds in the breeding pair lasted from 1 to 4 years and usually broke by the death of one or both mates. Successors of breeding females were their daughters, while a successor of a breeding male could be either his son or an alien wolf. As is evident from Białowieża’s wolves, high genetic diversity may result from immigration of outside individuals, which are easily recruited to a heavily exploited local population.

Collaboration


Dive into the Wojciech Branicki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manfred Kayser

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fan Liu

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Magdalena Spólnicka

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Lakshmi Chaitanya

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niels Morling

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge