Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wojciech Filipiak is active.

Publication


Featured researches published by Wojciech Filipiak.


Cancer Epidemiology, Biomarkers & Prevention | 2010

TD-GC-MS Analysis of Volatile Metabolites of Human Lung Cancer and Normal Cells In vitro

Wojciech Filipiak; Andreas Sponring; Anna Filipiak; Clemens Ager; Jochen K. Schubert; Wolfram Miekisch; Anton Amann; Jakob Troppmair

The aim of this study was to confirm the existence of volatile organic compounds (VOC) specifically released or consumed by the lung cancer cell line A549, which could be used in future screens as biomarkers for the early detection of lung cancer. For comparison, primary human bronchial epithelial cells (HBEpC) and human fibroblasts (hFB) were included. VOCs were detected in the headspace of cell cultures or medium controls following adsorption on solid sorbents, thermodesorption, and analysis by gas chromatography mass spectrometry. Using this approach, we identified VOCs that behaved similarly in normal and transformed cells. Thus, concentrations of 2-pentanone and 2,4-dimethyl-1-heptene were found to increase in the headspace of A549, HBEpC, and hFB cell cultures. In addition, the ethers methyl tert-butyl ether and ethyl tert-butyl ether could be detected at elevated levels in the case of A549 cells and one of the untransformed cell lines. However, especially branched hydrocarbons and alcohols were seen increased more frequently in untransformed than A549 cells. A big variety of predominantly aldehydes and the ester n-butyl acetate were found at decreased concentrations in the headspace of all cell lines tested compared with medium controls. Again, more different aldehydes were found to be decreased in hFB and HBEpC cells compared with A549 cells and 2-butenal was metabolized exclusively by both control cell lines. These data suggest that certain groups of VOCs may be preferentially associated with the transformed phenotype. Cancer Epidemiol Biomarkers Prev; 19(1); 182–95


Cancer Cell International | 2008

Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro

Wojciech Filipiak; Andreas Sponring; Tomas Mikoviny; Clemens Ager; Jochen K. Schubert; Wolfram Miekisch; Anton Amann; Jakob Troppmair

BackgroundThe aim of this work was to confirm the existence of volatile organic compounds (VOCs) specifically released or consumed by lung cancer cells.Methods50 million cells of the human non-small cell lung cancer (NSCLC) cell line CALU-1 were incubated in a sealed fermenter for 4 h or over night (18 hours). Then air samples from the headspace of the culture vessel were collected and preconcentrated by adsorption on solid sorbents with subsequent thermodesorption and analysis by means of gas chromatography mass spectrometry (GC-MS). Identification of altogether 60 compounds in GCMS measurement was done not only by spectral library match, but also by determination of retention times established with calibration mixtures of the respective pure compounds.ResultsThe results showed a significant increase in the concentrations of 2,3,3-trimethylpentane, 2,3,5-trimethylhexane, 2,4-dimethylheptane and 4-methyloctane in the headspace of CALU-1 cell culture as compared to medium controls after 18 h. Decreased concentrations after 18 h of incubation were found for acetaldehyde, 3-methylbutanal, butyl acetate, acetonitrile, acrolein, methacrolein, 2-methylpropanal, 2-butanone, 2-methoxy-2-methylpropane, 2-ethoxy-2-methylpropane, and hexanal.ConclusionOur findings demonstrate that certain volatile compounds can be cancer-cell derived and thus indicative of the presence of a tumor, whereas other compounds are not released but seem to be consumed by CALU-1 cells.


BMC Microbiology | 2012

Molecular analysis of volatile metabolites released specifically by staphylococcus aureus and pseudomonas aeruginosa

Wojciech Filipiak; Andreas Sponring; Maria Magdalena Baur; Anna Filipiak; Clemens Ager; Helmut Wiesenhofer; Markus Nagl; Jakob Troppmair; Anton Amann

BackgroundThe routinely used microbiological diagnosis of ventilator associated pneumonia (VAP) is time consuming and often requires invasive methods for collection of human specimens (e.g. bronchoscopy). Therefore, it is of utmost interest to develop a non-invasive method for the early detection of bacterial infection in ventilated patients, preferably allowing the identification of the specific pathogens. The present work is an attempt to identify pathogen-derived volatile biomarkers in breath that can be used for early and non- invasive diagnosis of ventilator associated pneumonia (VAP). For this purpose, in vitro experiments with bacteria most frequently found in VAP patients, i.e. Staphylococcus aureus and Pseudomonas aeruginosa, were performed to investigate the release or consumption of volatile organic compounds (VOCs).ResultsHeadspace samples were collected and preconcentrated on multibed sorption tubes at different time points and subsequently analyzed with gas chromatography mass spectrometry (GC-MS). As many as 32 and 37 volatile metabolites were released by S. aureus and P. aeruginosa, respectively. Distinct differences in the bacteria-specific VOC profiles were found, especially with regard to aldehydes (e.g. acetaldehyde, 3-methylbutanal), which were taken up only by P. aeruginosa but released by S. aureus. Differences in concentration profiles were also found for acids (e.g. isovaleric acid), ketones (e.g. acetoin, 2-nonanone), hydrocarbons (e.g. 2-butene, 1,10-undecadiene), alcohols (e.g. 2-methyl-1-propanol, 2-butanol), esters (e.g. ethyl formate, methyl 2-methylbutyrate), volatile sulfur compounds (VSCs, e.g. dimethylsulfide) and volatile nitrogen compounds (VNCs, e.g. 3-methylpyrrole).Importantly, a significant VOC release was found already 1.5 hours after culture start, corresponding to cell numbers of ~8*106 [CFUs/ml].ConclusionsThe results obtained provide strong evidence that the detection and perhaps even identification of bacteria could be achieved by determination of characteristic volatile metabolites, supporting the clinical use of breath-gas analysis as non-invasive method for early detection of bacterial lung infections.


Physiological Measurement | 2010

Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study

Julian King; Paweł Mochalski; Alexander Kupferthaler; Karl Unterkofler; Helin Koc; Wojciech Filipiak; Susanne Teschl; Hartmann Hinterhuber; Anton Amann

In this phenomenological study we focus on dynamic measurements of volatile organic compounds (VOCs) in exhaled breath under exercise conditions. An experimental setup efficiently combining breath-by-breath analyses using proton transfer reaction mass spectrometry (PTR-MS) with data reflecting the behaviour of major hemodynamic and respiratory parameters is presented. Furthermore, a methodology for complementing continuous VOC profiles obtained by PTR-MS with simultaneous SPME/GC-MS measurements is outlined. These investigations aim at evaluating the impact of breathing patterns, cardiac output or blood pressure on the observed breath concentration and allow for the detection and identification of several VOCs revealing characteristic rest-to-work transitions in response to variations in ventilation or perfusion. Examples of such compounds include isoprene, methyl acetate, butane, DMS and 2-pentanone. In particular, both isoprene and methyl acetate exhibit a drastic rise in concentration shortly after the onset of exercise, usually by a factor of about 3-5 within approximately 1 min of pedalling. These specific VOCs might also be interpreted as potentially sensitive indicators for fluctuations of blood or respiratory flow and can therefore be viewed as candidate compounds for future assessments of hemodynamics, pulmonary function and gas exchange patterns via observed VOC behaviour.


Journal of Breath Research | 2009

Determining concentration patterns of volatile compounds in exhaled breath by PTR-MS.

Konrad Schwarz; Wojciech Filipiak; Anton Amann

Proton-transfer-reaction mass spectrometry (PTR-MS) is a convenient technique for fast analysis of exhaled breath without prior sample preparation. Since compounds are not separated prior to analysis as in gas chromatography mass spectrometry (GC-MS), and since protonated molecules may fragment, relatively complex spectra may arise, which are not easily interpreted in a quantitative way. We calibrated 21 different compounds of importance for exhaled breath analysis, based on the respective pure standards diluted with nitrogen. These calibration measurements included determination of the fragmentation pattern of each compound under dry conditions and in the absence of CO(2). Even though the fragmentation pattern may be predicted in a qualitative manner, the quantitative details may depend on water and CO(2) content. This is exemplarily shown for isoprene. Out of the selected 21 compounds, 11 compounds showed substantial fragmentation (fragments proportion > 10%). Fragmentation of several volatile organic compounds (VOCs) in the drift tube of PTR-MS has been previously observed (Buhr et al 2002 Int. J. Mass Spectrom. 221 1-7; Taipale et al 2008 Atmos. Chem. Phys. Discuss. 8 9435-75; Hewitt et al 2003 J. Environ. Monit. 51-7; Warneke et al 2003 Environ. Sci. Technol. 37 2494-501; de Gouw and Warneke 2007 Mass Spectrom. Rev. 26 223-57; Pozo-Bayon et al 2008 J. Agric. Food Chem. 56 5278-84) and calibration factors for several compounds at corresponding mass-to-charge ratios have been calculated. In this paper, besides the calibration factors, the proportions of substantial fragments are also taken into account for a correct quantification in the case of overlapping signals. The spectrum of a mixture of the considered 21 compounds may be simulated. Conversely, the determination of concentrations from the spectrum of such a mixture is a linear optimization problem, whose solution is determined here using the simplex algorithm.


Journal of Breath Research | 2012

Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants.

Wojciech Filipiak; Vera Ruzsanyi; Paweł Mochalski; Anna Filipiak; Amel Bajtarevic; Clemens Ager; H. Denz; Wolfgang Hilbe; Herbert Jamnig; Martin Hackl; A. Dzien; Anton Amann

Non-invasive disease monitoring on the basis of volatile breath markers is a very attractive but challenging task. Several hundreds of compounds have been detected in exhaled air using modern analytical techniques (e.g. proton-transfer reaction mass spectrometry, gas chromatography-mass spectrometry) and have even been linked to various diseases. However,the biochemical background for most of compounds detected in breath samples has not been elucidated; therefore, the obtained results should be interpreted with care to avoid false correlations. The major aim of this study was to assess the effects of smoking on the composition of exhaled breath. Additionally, the potential origin of breath volatile organic compounds (VOCs) is discussed focusing on diet, environmental exposure and biological pathways based on others studies. Profiles of VOCs detected in exhaled breath and inspired air samples of 115 subjects with addition of urine headspace derived from 50 volunteers are presented. Samples were analyzed with GC-MS after preconcentration on multibed sorption tubes in case of breath samples and solid phase micro-extraction (SPME) in the case of urine samples. Altogether 266 compounds were found in exhaled breath of at least 10% of the volunteers. From these, 162 compounds were identified by spectral library match and retention time (based on reference standards). It is shown that the composition of exhaled breath is considerably influenced by exposure to pollution and indoor-air contaminants and particularly by smoking. More than 80 organic compounds were found to be significantly related to smoking, the largest group comprising unsaturated hydrocarbons (29 dienes, 27 alkenes and 3 alkynes). On the basis of the presented results, we suggest that for the future understanding of breath data it will be necessary to carefully investigate the potential biological origin of volatiles, e.g., by means of analysis of tissues, isolated cell lines or other body fluids. In particular, VOCs linked to smoking habit or being the results of human exposure should be considered with care for clinical diagnosis since small changes in their concentration profiles(typically in the ppt(v)–ppb(v) range) revealing that the outbreak of certain disease might be hampered by already high background.


Clinical Chemistry and Laboratory Medicine | 2008

Breath isoprene - aspects of normal physiology related to age, gender and cholesterol profile as determined in a proton transfer reaction mass spectrometry study

Ievgeniia Kushch; Barbora Arendacká; Svorad Štolc; Paweł Mochalski; Wojciech Filipiak; Konrad Schwarz; Lukas Schwentner; Alex Schmid; Alexander Dzien; Monika Lechleitner; Viktor Witkovský; Wolfram Miekisch; Jochen K. Schubert; Karl Unterkofler; Anton Amann

Abstract Background: This study was performed to clarify variations in breath isoprene concentrations with age, gender, body mass index (BMI) and total serum cholesterol. Our cohort consisted of 205 adult volunteers of different smoking background without health complaints. Total cholesterol in blood serum was measured in 79 of these volunteers. Methods: Mixed expiratory exhaled breath was sampled using Tedlar bags. Concentrations of isoprene were then determined using proton transfer reaction-mass spectrometry. Results: Isoprene concentrations ranged from 5.8 to 274.9 ppb, with an overall geometric mean (GM) of 99.3 ppb. There was no statistically significant difference in mean isoprene in breath between males and females (GM 105.4 and 95.5 ppb, respectively). Ageing led to a decrease in concentration in men, with an estimated slope of the regression line for log-transformed isoprene concentrations of –0.0049, but did not influence isoprene levels in women. We did not observe any significant correlation between isoprene breath content and cholesterol level in blood, even after adjusting for the possible influence of age. Similarly, no correlation was found between isoprene levels and BMI. Conclusions: Isoprene concentrations in exhaled breath showed gender-specific correlations with respect to age. Further investigations are necessary to clarify the relation between isoprene concentrations in exhaled breath and cholesterol levels and synthesis rates in blood. Clin Chem Lab Med 2008;46:1011–8.


Cancer Biomarkers | 2011

Analysis of volatile organic compounds (VOCs) in the headspace of NCI-H1666 lung cancer cells.

Andreas Sponring; Wojciech Filipiak; Clemens Ager; Jochen K. Schubert; Wolfram Miekisch; Anton Amann; Jakob Troppmair

Analysis of volatile organic compounds (VOCs) provides an elegant approach for cancer screening and disease monitoring, whose use is currently limited by a lack of validated cancer-derived metabolites, which may serve as biomarkers. The aim of the experiments presented here was to investigate the release and consumption of VOCs from the non small cell lung cancer cell line NCI-H1666, which was originally derived from a bronchoalveolar carcinoma.Following detachment by trypsinization suspended cells were incubated in a sealed fermenter for 21 hours. 200 ml of headspace from the cell culture were sampled, diluted with dry, highly purified air and preconcentrated by adsorption on three different solid sorbents with increasing adsorption strength. VOC-analysis was performed by thermodesorption-gas chromatography mass spectrometry (TD-GC-MS). In contrast to our previous studies experiments with NCI-H1666 cells only confirmed the consumption of several aldehydes, n-butyl acetate and the ethers methyl tert-butyl ether and ethyl tert-butyl ether, but no unequivocal release of VOCs was observed. Together with our previously published work these data indicate that the consumption of certain VOCs is commonly observed while their release shows cell line-restricted patterns, whose underlying causes are unknown.


Microbiology | 2012

Characterization of volatile metabolites taken up by or released from Streptococcus pneumoniae and Haemophilus influenzae by using GC-MS.

Wojciech Filipiak; Andreas Sponring; Maria Magdalena Baur; Clemens Ager; Anna Filipiak; Helmut Wiesenhofer; Markus Nagl; Jakob Troppmair; Anton Amann

Volatile organic compounds (VOCs) released from or taken up by Streptococcus pneumoniae and Haemophilus influenzae cultures were analysed by means of GC-MS after adsorption of headspace samples on multi-bed sorption tubes. Sampling was performed at different time points during cultivation of bacteria to follow the dynamics of VOC metabolism. VOCs were identified not only by spectral library match but also based on retention times of native standards. As many as 34 volatile metabolites were released from S. pneumoniae and 28 from H. influenzae, comprising alcohols, aldehydes, esters, hydrocarbons, ketones and sulfur-containing compounds. For both species, acetic acid, acetaldehyde, methyl methacrylate, 2,3-butanedione and methanethiol were found in strongly elevated concentrations and 1-butanol and butanal in moderately elevated concentrations. In addition, characteristic volatile biomarkers were detected for both bacterial species and exclusively for S. pneumoniae, also catabolism of aldehydes (3-methylbutanal and hexanal) was found. The results obtained provide important input into the knowledge about volatile bacterial biomarkers, which may become particularly important for detection of pathogens in upper airways by breath-gas analysis in the future.


Journal of Breath Research | 2009

3-Heptanone as a potential new marker for valproic acid therapy

S Erhart; Anton Amann; E Haberlandt; G Edlinger; Alex Schmid; Wojciech Filipiak; Konrad Schwarz; Paweł Mochalski; K Rostasy; Daniela Karall; Sabine Scholl-Bürgi

Breath gas samples from 27 patients with epilepsy (17 male and 10 female patients; mean age: 9.7 years, median age: 8.2 years, SD: ±4.2 years) were screened via proton transfer reaction mass spectrometry. The patients were treated with valproic acid (VPA) therapy, and blood samples for determination of VPA concentrations were surveyed. All patients showed significantly elevated concentrations of 3-heptanone (C(7)H(14)O) in exhaled breath gas (mean: 14.7 ppb, median: 13.8 ppb SD: ±5.7 ppb). In human breath, several hundred different volatile organic compounds can be detected. In breath of patients with valproic acid monotherapy, an increased concentration of 3-heptanone was measured. The objective of this study was to investigate if serum VPA concentrations correlate with 3-heptanone concentrations in exhaled breath. In conclusion, 3-heptanone in breath gas is significantly elevated in patients treated with the valproic acid, but does not correlate significantly with the VPA concentrations in serum or the daily dose of this drug.

Collaboration


Dive into the Wojciech Filipiak's collaboration.

Top Co-Authors

Avatar

Anton Amann

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Clemens Ager

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Jakob Troppmair

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Andreas Sponring

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Anna Filipiak

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Konrad Schwarz

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Paweł Mochalski

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Amel Bajtarevic

Austrian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge