Wojciech Fortuna
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wojciech Fortuna.
Advances in Virus Research | 2012
Ryszard Międzybrodzki; Jan Borysowski; Beata Weber-Dąbrowska; Wojciech Fortuna; Sławomir Letkiewicz; Krzysztof Szufnarowski; Zdzisław Pawełczyk; Paweł Rogóż; Marlena Kłak; Elżbieta Wojtasik; Andrzej Górski
Phage therapy (PT) is a unique method of treatment of bacterial infections using bacteriophages (phages)-viruses that specifically kill bacteria, including their antibiotic-resistant strains. Over the last decade a marked increase in interest in the therapeutic use of phages has been observed, which has resulted from a substantial rise in the prevalence of antibiotic resistance of bacteria, coupled with an inadequate number of new antibiotics. The first, and so far the only, center of PT in the European Union is the Phage Therapy Unit (PTU) established at the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland in 2005. This center continues the rich tradition of PT in Poland, which dates from the early 1920s. The main objective of this chapter is to present a detailed retrospective analysis of the results of PT of 153 patients with a wide range of infections resistant to antibiotic therapy admitted for treatment at the PTU between January 2008 and December 2010. Analysis includes the evaluation of both the efficacy and the safety of PT. In general, data suggest that PT can provide good clinical results in a significant cohort of patients with otherwise untreatable chronic bacterial infections and is essentially well tolerated. In addition, the whole complex procedure employed to obtain and characterize therapeutic phage preparations, as well as ethical aspects of PT, is discussed.
Cell Transplantation | 2013
Pawel Tabakow; Włodzimierz Jarmundowicz; Bogdan Czapiga; Wojciech Fortuna; Ryszard Międzybrodzki; Marcin Czyz; Juliusz Huber; Dariusz Szarek; Stefan Okurowski; Paweł Szewczyk; Andrzej Górski; Geoffrey Raisman
Numerous studies in animals have shown the unique property of olfactory ensheathing cells to stimulate regeneration of lesioned axons in the spinal cord. In a Phase I clinical trial, we assessed the safety and feasibility of transplantation of autologous mucosal olfactory ensheathing cells and olfactory nerve fibroblasts in patients with complete spinal cord injury. Six patients with chronic thoracic paraplegia (American Spinal Injury Association class A-ASIA A) were enrolled for the study. Three patients were operated, and three served as a control group. The trial protocol consisted of pre- and postoperative neurorehabilitation, olfactory mucosal biopsy, culture of olfactory ensheathing cells, and intraspinal cell grafting. Patients clinical state was evaluated by clinical, neurophysiological, and radiological tests. There were no adverse findings related to olfactory mucosa biopsy or transplantation of olfactory ensheathing cells at 1 year after surgery. There was no evidence of neurological deterioration, neuropathic pain, neuroinfection, or tumorigenesis. In one cell-grafted patient, an asymptomatic syringomyelia was observed. Neurological improvement was observed only in transplant recipients. The first two operated patients improved from ASIA A to ASIA C and ASIA B. Diffusion tensor imaging showed restitution of continuity of some white matter tracts throughout the focus of spinal cord injury in these patients. The third operated patient, although remaining ASIA A, showed improved motor and sensory function of the first spinal cords segments below the level of injury. Neurophysiological examinations showed improvement in spinal cord transmission and activity of lower extremity muscles in surgically treated patients but not in patients receiving only neurorehabilitation. Observations at 1 year indicate that the obtaining, culture, and intraspinal transplantation of autologous olfactory ensheathing cells were safe and feasible. The significance of the neurological improvement in the transplant recipients and the extent to which the cell transplants contributed to it will require larger numbers of patients.
Advances in Virus Research | 2012
Andrzej Górski; Ryszard Międzybrodzki; Jan Borysowski; Krystyna Dąbrowska; Piotr Wierzbicki; Monika Ohams; Grażyna Korczak-Kowalska; Natasza Olszowska-Zaremba; Marzena Łusiak-Szelachowska; Marlena Kłak; Ewa Jończyk; Ewelina Kaniuga; Aneta Gołaś; Sylwia Purchla; Beata Weber-Dąbrowska; Sławomir Letkiewicz; Wojciech Fortuna; Krzysztof Szufnarowski; Zdzisław Pawełczyk; Paweł Rogóż; Danuta Kłosowska
Although the natural hosts for bacteriophages are bacteria, a growing body of data shows that phages can also interact with some populations of mammalian cells, especially with cells of the immune system. In general, these interactions include two main aspects. The first is the phage immunogenicity, that is, the capacity of phages to induce specific immune responses, in particular the generation of specific antibodies against phage antigens. The other aspect includes the immunomodulatory activity of phages, that is, the nonspecific effects of phages on different functions of major populations of immune cells involved in both innate and adaptive immune responses. These functions include, among others, phagocytosis and the respiratory burst of phagocytic cells, the production of cytokines, and the generation of antibodies against nonphage antigens. The aim of this chapter is to discuss the interactions between phages and cells of the immune system, along with their implications for phage therapy. These topics are presented based on the results of experimental studies and unique data on immunomodulatory effects found in patients with bacterial infections treated with phage preparations.
Archive | 2012
Andrzej Górski; Ryszard Międzybrodzki; Jan Borysowski; Krystyna Dąbrowska; Piotr Wierzbicki; Monika Ohams; Grażyna Korczak-Kowalska; Natasza Olszowska-Zaremba; Marzena Łusiak-Szelachowska; Marlena Kłak; Ewa Jończyk; Ewelina Kaniuga; Aneta Gołaś; Sylwia Purchla; Beata Weber-Dąbrowska; Sławomir Letkiewicz; Wojciech Fortuna; Krzysztof Szufnarowski; Zdzisław Pawełczyk; Paweł Rogóż; Danuta Kłosowska
Although the natural hosts for bacteriophages are bacteria, a growing body of data shows that phages can also interact with some populations of mammalian cells, especially with cells of the immune system. In general, these interactions include two main aspects. The first is the phage immunogenicity, that is, the capacity of phages to induce specific immune responses, in particular the generation of specific antibodies against phage antigens. The other aspect includes the immunomodulatory activity of phages, that is, the nonspecific effects of phages on different functions of major populations of immune cells involved in both innate and adaptive immune responses. These functions include, among others, phagocytosis and the respiratory burst of phagocytic cells, the production of cytokines, and the generation of antibodies against nonphage antigens. The aim of this chapter is to discuss the interactions between phages and cells of the immune system, along with their implications for phage therapy. These topics are presented based on the results of experimental studies and unique data on immunomodulatory effects found in patients with bacterial infections treated with phage preparations.
Frontiers in Microbiology | 2016
Andrzej Górski; Ryszard Międzybrodzki; Beata Weber-Dąbrowska; Wojciech Fortuna; Sławomir Letkiewicz; Paweł Rogóż; Ewa Jończyk-Matysiak; Krystyna Dąbrowska; Joanna Majewska; Jan Borysowski
Antimicrobial resistance is considered to be one of the greatest challenges of medicine and our civilization. Lack of progress in developing new anti-bacterial agents has greatly revived interest in using phage therapy to combat antibiotic-resistant infections. Although a number of clinical trials are underway and more are planned, the realistic perspective of registration of phage preparations and their entering the health market and significantly contributing to the current antimicrobial crisis is rather remote. Therefore, in addition to planning further clinical trials, our present approach of phage treatment carried out as experimental therapy (compassionate use) should be expanded to address the growing and urgent needs of increasing cohorts of patients for whom no alternative treatment is currently available. During the past 11 years of our phage therapy center’s operation, we have obtained relevant clinical and laboratory data which not only confirm the safety of the therapy but also provide important information shedding more light on many aspects of the therapy, contributing to its optimization and allowing for construction of the most appropriate clinical trials. New data on phage biology and interactions with the immune system suggest that in the future phage therapy may evolve from dealing with complications to targeting diseases. However, further studies are necessary to confirm this promising trend.
Folia Microbiologica | 2009
Sławomir Letkiewicz; Ryszard Międzybrodzki; Wojciech Fortuna; Beata Weber-Dąbrowska; Andrzej Górski
The treatment of three patients suffering from chronic bacterial prostatitis who were qualified for an experimental phage therapy protocol managed at the Phage Therapy Unit in Wrocław is described. They had previously been treated unsuccessfully with long-term targeted antibiotics, autovaccines, and laser biostimulation. Rectal application of phage lysates targeted against Enterococcus faecalis cultured from the prostatic fluid gave encouraging results regarding bacterial eradication, abatement of clinical symptoms of prostatitis, and lack of early disease recurrence.
Glia | 2006
Ryszard Międzybrodzki; Pawel Tabakow; Wojciech Fortuna; Bogdan Czapiga; Włodzimierz Jarmundowicz
During the last decade, olfactory ensheathing cells (OECs) have been successfully applied in multiple experimental approaches aimed to repair damaged mammalian spinal cord. Some of these experiments have consequently been translated into clinical trials. Finding a reliable source of human OECs that is easily accessible and can ensure a sufficient number of cells is a major prerequisite for conducting studies on OEC‐mediated spinal cord regeneration. Here, we present a procedure for obtaining olfactory bulbs (OBs) and olfactory mucosa (OM) simultaneously from adult cadaver heart‐beating donors for OEC isolation and analyze some of the factors that may condition successful OEC culture. We show that the results of OEC culture from OBs (10 cases) correlated significantly with warm ischemia time (WIT) as well as the initial viability of the isolated cells. Efficient OEC culture was possible when the WIT for the OB was up to 20 min. Brain damage, assessed by determination of S100B serum level, was not related to the success of OEC culture from the OB. Cadaver OM (7 cases) was shown to be a more reliable source of human OECs than the OB. In most of the examined cases the efficacy of culturing OECs from cadaver OM obtained even 180 min after cardiac arrest was comparable to that of living patients. The method of obtaining OBs and OM from cadavers enables the use of an alternative source of primary adult human OECs for further preclinical and clinical studies on their neurotrophic properties.
Archivum Immunologiae Et Therapiae Experimentalis | 2007
Marta Misiuk-Hojło; Maria Ejma; Wojciech A. Gorczyca; Stanisław Szymaniec; Danuta Witkowska; Wojciech Fortuna; Ryszard Miȩdzybrodzki; Jadwiga Rogozińska-Szczepka; Wiesława Bartnik
Introduction:Cancer-associated retinopathy (CAR) is a paraneoplastic neurological syndrome resulting in progressive loss of vision and clinical signs of retinal degeneration. It is associated with various types of cancer and is also considered to be an autoimmune disorder that involves cross-reaction between autoantibodies and retinal proteins. The aim of this study was to establish whether immunoreactivity to retinal antigens (RAs) observed in patients with breast cancer is accompanied by any visual impairments.Materials and Methods:Sera of 295 patients with diagnosed breast cancer were screened for the presence of anti-RAs antibodies using immunoblotting. Cellular immunoreactivity to RAs present in retinal extracts and to purified recoverin and arrestin was determined by means of a lymphocyte proliferation assay. Six patients with high-titer antibodies to RAs then underwent ophthalmic and neurological examinations.Results:Four serum samples contained high-titer antibodies to a 46-kDa protein, most probably retinal α-enolase, three had antibodies to a 48-kDa protein identified as retinal arrestin, while 56-, 43-, 41-, and 34-kDa antigens were recognized only by one serum sample each. Moreover, weak cellular response to all the RAs tested was observed in one patient and another patient responded only to retinal extract. Two of the examined patients displayed symptoms of CAR.Conclusions:Immunoreactivity to RAs in patients with breast cancer may also be present in cases without clinical signs of CAR.
Fems Immunology and Medical Microbiology | 2003
Jolanta Lukasiewicz; Wojciech Jachymek; Tomasz Niedziela; Monika Dzieciatkowska; Joanna Lakomska; Ryszard Międzybrodzki; Wojciech Fortuna; Stanisław Szymaniec; Marta Misiuk-Hojlo; Czeslaw Lugowski
The covalent conjugate of oligosaccharide core of Escherichia coli type R4 with tetanus toxoid was prepared using reaction of reductive amination. The neoglycoconjugate was a good immunogen in rabbits yielding a high level of anti-lipopolysaccharide (LPS) antibodies of the IgG class. It was found that antiserum was able to react with the smooth LPS molecules of identical (R4) or related (R1) core type. The reactions were shown in the enzyme-linked immunosorbent assay and the immunoblotting test. Flow cytometry showed that anti-core antibodies reacted with LPS present on intact, live, smooth bacteria labelling more than 90% of cells. The anti-OS R4-TT serum used for in vitro studies showed high endotoxin neutralization activity. The serum inhibited endotoxin-induced tumor necrosis factor alpha and nitric oxide synthesis by the J-774A.1 cell line and attenuated pulmonary retention of YAC-1 cells.
Frontiers in Microbiology | 2016
Maciej Żaczek; Marzanna Łusiak-Szelachowska; Ewa Jończyk-Matysiak; Beata Weber-Dąbrowska; Ryszard Międzybrodzki; Barbara Owczarek; Agnieszka Kopciuch; Wojciech Fortuna; Paweł Rogóż; Andrzej Górski
In this study, we investigated the humoral immune response (through the release of IgG, IgA, and IgM antiphage antibodies) to a staphylococcal phage cocktail in patients undergoing experimental phage therapy at the Phage Therapy Unit, Medical Center of the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy in Wrocław, Poland. We also evaluated whether occurring antiphage antibodies had neutralizing properties toward applied phages (K rate). Among 20 examined patients receiving the MS-1 phage cocktail orally and/or locally, the majority did not show a noticeably higher level of antiphage antibodies in their sera during phage administration. Even in those individual cases with an increased immune response, mostly by induction of IgG and IgM, the presence of antiphage antibodies did not translate into unsatisfactory clinical results of phage therapy. On the other hand, a negative outcome of the treatment occurred in some patients who showed relatively weak production of antiphage antibodies before and during treatment. This may imply that possible induction of antiphage antibodies is not an obstacle to the implementation of phage therapy and support our assumption that the outcome of the phage treatment does not primarily depend on the appearance of antiphage antibodies in sera of patients during therapy. These conclusions are in line with our previous findings. The confirmation of this thesis is of great interest as regards the efficacy of phage therapy in humans.