Wojciech Konicki
Maritime University of Szczecin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wojciech Konicki.
Journal of Colloid and Interface Science | 2013
Wojciech Konicki; Daniel Sibera; Ewa Mijowska; Zofia Lendzion-Bieluń; U. Narkiewicz
A magnetic ZnFe2O4 (MNZnFe) was synthesized by microwave assisted hydrothermal method and was used as an adsorbent for the removal of acid dye Acid Red 88 (AR88) from aqueous solution. The effects of various parameters such as initial AR88 concentration (10-56 mg L(-1)), pH solution (3.2-10.7), and temperature (20-60°C) were investigated. Prepared magnetic ZnFe2O4 was characterized by XRD, SEM, HRTEM, ICP-AES, BET, FTIR, and measurements of the magnetic susceptibility. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with the Langmuir model. Pseudo-first-order and pseudo-second-order kinetic models and intraparticle diffusion model were used to examine the adsorption kinetic data. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. Thermodynamics parameters, ΔG°, ΔH° and ΔS°, indicate that the adsorption of AR88 onto MNZnFe was spontaneous and exothermic in nature.
Journal of Colloid and Interface Science | 2017
Wojciech Konicki; Malgorzata Aleksandrzak; Dariusz Moszyński; Ewa Mijowska
In the present study, graphene oxide (GO) was used for the adsorption of anionic azo-dyes such as Acid Orange 8 (AO8) and Direct Red 23 (DR23) from aqueous solutions. GO was characterized by Fourier Transform-Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric Analysis (TGA), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HRTEM) and zeta potential measurements. The influence of dye initial concentration, temperature and pH on AO8 and DR23 adsorption onto GO was investigated. Equilibrium data were analyzed by model equations such as Langmuir Freundlich, Temkin, Dubinin-Radushkevich and Redlich-Peterson isotherms and were best represented by Langmuir and Redlich-Peterson isotherm model. Kinetic adsorption data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. The adsorption kinetics well fitted using a pseudo-second-order kinetic model. Thermodynamics parameters, ΔG°, ΔH° and ΔS°, were calculated, indicating that the adsorption of AO8 and DR23 onto GO was spontaneous process. The adsorption process of AO8 onto GO was exothermic, while the adsorption of DR23 onto GO was endothermic in nature.
Journal of Colloid and Interface Science | 2017
Wojciech Konicki; Agnieszka Hełminiak; Walerian Arabczyk; Ewa Mijowska
In this study, magnetic Fe@graphite nanocomposite (Fe@G-N) with a core-shell structure was prepared by chemical vapor deposition CVD process for the adsorptive removal of anionic dyes from aqueous solutions. Fe@G-N was characterized by XRD, HRTEM, HAADF-STEM, FTIR, Raman spectroscopy, BET and zeta potential measurements, and then applied in adsorption of two kinds of anionic dyes, Acid Red 88 (AR88) and Direct Orange 26 (DO26). The effect of parameters like initial dye concentration (5-40mgL-1), pH solution (4-10) and temperature (20-60°C) on the adsorption process was studied. The pseudo-first-order, pseudo-second-order kinetic models and the intraparticle diffusion model were used to describe the kinetic data. A kinetic study indicated that a pseudo-second-order model agreed well with the experimental data. The experimental data were analyzed by the Langmuir and Freundlich adsorption models. Adsorption equilibrium studies showed that adsorption of AR88 and DO26 followed the Langmuir model. Thermodynamic parameters such as Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were also obtained and analyzed.
Colloids and Surfaces B: Biointerfaces | 2015
Ewa Mijowska; Krzysztof Cendrowski; Martyna Barylak; Wojciech Konicki
In this paper, we present the technology of synthesis, characterization and release kinetics of anticancer drug molecules from sandwich-like mesoporous silica nanoflakes. Mesoporous silica nanoflakes are a very attractive material due to their versatility, low cytotoxicity, large surface area, high pore volume and unique feature of containing parallel pores openon both sides. Nanosilica flakes were prepared through the formation of a mesoporous silica layer on a graphene oxide surface. After graphene oxide removal, the silica nanostructures were filled by an anticancer drug-methotrexate. Release kinetics studies were performed in different temperatures, imitating the conditions in living organisms. Release data was analyzed using the zero-order model, first-order model, Higuchi model and Korsmeyer-Peppas model. The optical properties of samples, and the kinetics of drug release from the nanostructure, were examined by UV-vis spectrophotometer. Data obtained from long term studies showed that the system can serve as an anticancer drug carrier system, since a significant amount of methotrexate was loaded to the material and released. The mechanism of MTX release from mesoporous silica nanoflakes appeared to be a parallel processes of diffusion through water-filled mesopores and degradation of the mSiO2 matrix. Physical and chemical characterization was undertaken by transmission electron microscopy (TEM) and X-ray dispersion spectroscopy (EDX). The specific surface area of the samples was measured through the adsorption of N2 isotherm, interpreted with the Brunauer-Emmett-Teller model (BET). TGA and UV-vis analyses were conducted in order to estimate the amount of the released drug.
Polish Journal of Chemical Technology | 2014
Wojciech Konicki; Ewa Mijowska
Abstract The removal of Ni2+ from aqueous solution by magnetic multiwalled carbon nanotube nanocomposite (MMWCNTs-C) was investigated. MMWCNTs-C was characterized by X-ray Diffraction method (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), surface area (BET), and Fourier Transform-Infrared Spectroscopy (FTIR). The effects of initial concentration, contact time, solution pH, and temperature on the Ni2+ adsorption onto MMWCNTs-C were studied. The Langmuir and Freundlich isotherm models were applied to fit the adsorption data. The results showed that the adsorption isotherm data were fitted well to the Langmuir isotherm model with the maximum monolayer adsorption capacity of 2.11 mg g–1. The adsorption kinetics was best described by the pseudo-second-order model. The thermodynamic parameters, such as ΔHo, ΔGo and ΔSo, were also determined and evaluated. The adsorption of Ni2+ is generally spontaneous and thermodynamically favorable. The values of ΔHo and ΔGo indicate that the adsorption of Ni2+ onto MMWCNTs-C was a physisorption process.
Polish Journal of Chemical Technology | 2016
Wojciech Konicki; Rafał Pelka; Walerian Arabczyk
Abstract The removal of Ni2+ from aqueous solution by iron nanoparticles encapsulated by graphitic layers (Fe@G) was investigated. Nanoparticles Fe@G were prepared by chemical vapor deposition CVD process using methane as a carbon source and nanocrystalline iron. The properties of Fe@G were characterized by X-ray Diffraction method (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform-Infrared Spectroscopy (FTIR), BET surface area and zeta potential measurements. The effects of initial Ni2+ concentration (1–20 mg L−1), pH (4–11) and temperature (20–60°C) on adsorption capacity were studied. The adsorption capacity at equilibrium increased from 2.96 to 8.78 mg g−1, with the increase in the initial concentration of Ni2+ from 1 to 20 mg L−1 at pH 7.0 and 20oC. The experimental results indicated that the maximum Ni2+ removal could be attained at a solution pH of 8.2 and the adsorption capacity obtained was 9.33 mg g−1. The experimental data fitted well with the Langmuir model with a monolayer adsorption capacity of 9.20 mg g−1. The adsorption kinetics was found to follow pseudo-second-order kinetic model. Thermodynamics parameters, ΔHO, ΔGO and ΔSO, were calculated, indicating that the adsorption of Ni2+ onto Fe@G was spontaneous and endothermic in nature.
Polish Journal of Chemical Technology | 2017
Wojciech Konicki; Daniel Siber; Urszula Narkiewicz
Abstract Magnetic ZnFe2O4 nanocomposite (ZnFe-NC) was used as an adsorbent for the removal of Rhodamine B (RB) from aqueous solution. The synthesized nanocomposite was characterized by XRD, SEM, HRTEM, BET and FTIR. The effects of various parameters such as initial RB concentration (5–25 mg L−1), pH (3.4–11.1) and temperature (20–60°C) were investigated. The adsorption capacity at equilibrium increased from 5.02 to 9.83 mg g−1, with the increase in the initial concentration of RB from 5 to 25 mg L−1 at pH 7.0 and at 20°C. The experimental results indicated that the maximum RB removal could be attained at a solution pH of 4.4 and the adsorption capacity obtained was 6.02 mg g−1. Kinetic adsorption data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order model and the intraparticle diffusion model. The adsorption kinetics well fitted using a pseudo-second-order kinetic model. The experimental isotherm data were analyzed using two isotherm models, namely, Langmuir and Freundlich. The results revealed that the adsorption behavior of the RB onto ZnFe-NC fitted well with the Langmuir isotherm model. In addition, various thermodynamic parameters, such as standard Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) have been calculated.
Polish Journal of Chemical Technology | 2017
Wojciech Konicki; Malgorzata Aleksandrzak; Ewa Mijowska
Abstract In this study, the adsorption of Ni2+ and Fe3+ metal ions from aqueous solutions onto graphene oxide (GO) have been explored. The effects of various experimental factors such as pH of the solution, initial metal ion concentration and temperature were evaluated. The kinetic, equilibrium and thermodynamic studies were also investigated. The adsorption rate data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. Kinetic studies indicate that the adsorption of both ions follows the pseudo-second-order kinetics. The isotherms of adsorption data were analyzed by adsorption isotherm models such as Langmuir and Freundlich. Equilibrium data fitted well with the Langmuir model. The maximum adsorption capacities of Ni2+ and Fe3+ onto GO were 35.6 and 27.3 mg g−1, respectively. In addition, various thermodynamic parameters, such as enthalpy (ΔHO), entropy (ΔSO) and Gibbs free energy (ΔGO), were calculated.
Separation Science and Technology | 2018
Wojciech Konicki; Daniel Sibera; U. Narkiewicz
ABSTRACT The ZnO/ZnMn2O4 nanocomposite (ZnMn) was used as adsorbent for the removal of cationic dye Basic Yellow 28 (BY28) from aqueous solutions. The adsorbent was characterized by X-ray diffraction, scanning electron microscope, TEM, Fourier transform infrared ray, BET, particle size distribution and zeta potential measurements. The adsorption parameters, such as temperature, pH and initial dye concentration, were studied. Kinetic adsorption data were analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The Langmuir and Freundlich isotherm models were applied to fit the equilibrium data. The maximum adsorption capacity of BY28 was 48.8 mg g−1. Various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were calculated.
Chemical Engineering Journal | 2012
Wojciech Konicki; Ewa Mijowska; Izabella Jasińska