Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wojciech Miltyk is active.

Publication


Featured researches published by Wojciech Miltyk.


Amino Acids | 2008

Prolidase-dependent regulation of collagen biosynthesis.

Arkadiusz Surażyński; Wojciech Miltyk; Jerzy Pałka; James M. Phang

Prolidase [EC.3.4.13.9] is a cytosolic imidodipeptidase, which specifically splits imidodipeptides with C-terminal proline or hydroxyproline. The enzyme plays an important role in the recycling of proline from imidodipeptides (mostly derived from degradation products of collagen) for resynthesis of collagen and other proline-containing proteins. The enzyme activity is up-regulated by β1-integrin receptor stimulation. The increase in the enzyme activity is due to its phosphorylation on serine/threonine residues. Collagen is not only structural component of extracellular matrix. It has been recognized as a ligand for integrin receptors, which play an important role in signaling that regulate ion transport, lipid metabolism, kinase activation and gene expression. Therefore, changes in the quantity, structure and distribution of collagens in tissues may affect cell signaling, metabolism and function. Several line of evidence suggests that prolidase activity may be a step-limiting factor in the regulation of collagen biosynthesis. It has been shown in different physiologic and pathologic conditions. It is of great importance during wound healing, inflammation, aging, tissue fibrosis and possibly skeletal abnormalities seen in Osteogenesis Imperfecta. The mechanism of prolidase-dependent regulation of collagen biosynthesis was found at both transcriptional and post-transcriptional levels. In this study, we provide evidence for prolidase-dependent transcriptional regulation of collagen biosynthesis. The mechanism was found at the level of NF-kB, known inhibitor of type I collagen gene expression. Modulation of integrin-dependent signaling by stimulatory (i.e. thrombin) or inhibitory (i.e. echistatin) β1-integrin ligands or by nitric oxide donors (i.e. DETA/NO) affect prolidase at post-transcriptional level. All those factors may represent novel approach to pharmacotherapy of connective tissue disorders.


Molecular and Cellular Biochemistry | 1997

Fibroblast chemotaxis and prolidase activity modulation by insulin-like growth factor II and mannose 6-phosphate.

Jerzy Pałka; Ewa Karna; Wojciech Miltyk

Chemotactic locomotion of fibroblasts requires extensive degradation of extracellular matrix components. The degradation is provided by a variety of proteases, including lysosomal enzymes. The process is regulated by cytokines. The present study shows that mannose 6-phosphate and insulin-like growth factor II (IGF-II) enhance fibroblast chemotaxis toward platelet-derived growth factor (PDGF). It is suggested that lysosomal enzymes (bearing mannose 6-phosphate molecules) are involved in chemotactic activity of the cells. The suggestion is supported by the observation that a-mannosidase and cathepsin D inhibitor - pepstatin are very potent inhibitors of fibroblast chemotaxis. Simultaneously, mannose 6-phosphate stimulates extracellular collagen degradation. The final step in collagen degradation is catalyzed by the cytosolic enzyme - prolidase. It has been found that mannose 6-phosphate stimulates also fibroblast prolidase activity with a concomitant increase in lysosomal enzymes activity. The present study demonstrates that the prolidase activity in fibroblasts may reflect the chemotactic activity of the cells and suggests that the mechanism of cell locomotion may involve lysosomal enzyme targeting, probably through IGF-II/mannose 6-phosphate receptor.


Comparative Biochemistry and Physiology B | 2001

The potential mechanism for glutamine-induced collagen biosynthesis in cultured human skin fibroblasts.

Ewa Karna; Wojciech Miltyk; Slawomir Wolczynski; Jerzy Pałka

Although glutamine (Gln) is known as an important stimulator of collagen biosynthesis in collagen-producing cells, the mechanism and endpoints by which it regulate the process remain largely unknown. Intermediates of Gln interconversion: glutamate (Glu) and pyrroline-5-carboxylate (P5C) stimulate collagen biosynthesis in cultured cells but evoke different maxima of collagen biosynthesis stimulating activity at different times of incubation. P5C was found to be the most potent stimulator of collagen biosynthesis after 6 h of incubation (approx. three-fold increase); after 12 h, it induced increase in collagen biosynthesis to 260%, while at 24 h, the process was decreased to approximately 80% of control values. Glu induced increase in collagen biosynthesis to approximately 180%, 400% and 120% of control values, after 6, 12 and 24 h, respectively, suggesting that after 12 h of incubation, Glu was the most potent stimulator of collagen biosynthesis. Glu was also the most potent stimulator of type I procollagen expression at this time. After 6, 12 and 24 h incubation, Gln induced collagen biosynthesis to approximately 112, 115 and 230% of control values, respectively. Since prolidase is known to be involved in collagen metabolism, the enzyme activity assay was performed in fibroblasts cultured in the presence of Gln, Glu and P5C. While Gln and Glu required 24 h for maximal stimulation of prolidase activity, P5C induced it after 6-12 h. The data suggest that P5C induced collagen biosynthesis and prolidase activity in a shorter time than Gln and Glu. We considered that P5C directly stimulates the processes, while Gln acts through its intermediate-P5C. Reduction of P5C to proline is coupled to the conversion of glucose-6-phosphate (G6P) to 6-phospho-gluconate, catalyzed by G6P dehydrogenase. We have found that dehydroepiandrosterone (DHEA), a potent inhibitor of G6P dehydrogenase, inhibited a stimulatory effect of P5C on collagen synthesis, expression of type I collagen and prolidase activity. Our results postulate a potential mechanism of glutamine-induced collagen biosynthesis through its intermediate - P5C. P5C-dependent activation of nucleotide biosynthesis, prolidase activity and P5C conversion into proline may contribute to the stimulation of collagen biosynthesis.


Archives of Pharmacal Research | 2007

Apoptosis-mediated cytotoxicity of ouabain, digoxin and proscillaridin A in the estrogen independent MDA-MB-231 breast cancer cells

Katarzyna Winnicka; Krzysztof Bielawski; Anna Bielawska; Wojciech Miltyk

We examined the effects of three cardiac glycosides, ouabain, digoxin and proscillaridin A, on the proliferation of estrogen independent MDA-MB-231 breast cancer cells. In terms of reduction in cell viability, the compounds rank for both 24 h and 48 h of incubation in MDA-MB-231 cells in the order proscillaridin A > digoxin > ouabain. Digoxin for 24 h and 48 h of incubation in MDA-MB-231 cells proved to be only slightly more potent than ouabain, with IC50 values of 122 ± 2 and 70 ± 2 nM, respectively, compared to 150 ± 2 and 90 ± 2 nM for ouabain. In contrast, proscillaridin A, was much more active and showed a high level of cytotoxic potency, IC50 51 ± 2 and 15 ± 2 nM for 24 h and 48 h of incubation, respectively. The concentrations of digoxin, ouabain and proscillaridin A needed to inhibit [3H]thymidine incorporation into DNA by 50% (IC50) in MDA-MB-231 cells for 24 h of incubation were found to be 124 ± 2 nM, 142 ± 2 nM, and 48 ± 2 nM, respectively. In the present study, we demonstrated that ouabain, digoxin, and proscillaridin A induce apoptosis in MDA-MB-231 cells by increasing free calcium concentration and by activating caspase-3.


Molecular and Cellular Biochemistry | 1998

Insulin-like growth factor I-dependent regulation of prolidase activity in cultured human skin fibroblasts

Wojciech Miltyk; Ewa Karna; Slawomir Wolczynski; Jerzy Pałka

Prolidase [E.C.3.4.13.9] is a cytosolic exopeptidase that catalyses the hydrolysis of C-terminal proline containing dipeptides or tripeptides. The enzyme plays an important role in the recycling of proline for collagen synthesis. Increase in enzyme activity is correlated with increased rates of collagen turnover but the mechanism and endpoints by which this enzyme is regulated remain largely unknown. We have found that insulin-like growth factor-I (IGF-I), potent stimulator of collagen biosynthesis, induces prolidase activity in cultured human skin fibroblasts. Supporting evidence comes from the following observations: (1) Serum of fasted rats, (IGF-I, 72 ± 16 ng/ml) showed about 50% reduced ability to stimulate prolidase activity and collagen biosynthesis in confluent fibroblasts in comparison to the effect of control rat serum (IGF-I, 168 ± 29). (2) An addition of IGF-I (100 ng/ml) to fasted rat serum restored its ability to stimulate prolidase activity and collagen biosynthesis to control values. (3) In confluent human skin fibroblasts, cultured for 48 h with serum free medium prolidase activity was decreased to 50% of control cells, cultured in the presence of normal rat serum. Supplementation of serum free medium with EGF, PDGF and IGF-I (factors that can replace growth promoting activity of serum) stimulated prolidase activity to control values while the medium deprived IGF-I had no such effect. (4) The relative differences in prolidase activity due to specific treatment of confluent cells with above growth factors were accompanied by parallel differences in the amount of the enzyme protein recovered from these cells as shown by western immunoblot analysis. Thus we conclude that prolidase activity is regulated by IGF-I in confluent fibroblasts.


Journal of Cellular Biochemistry | 2005

Nitric oxide regulates prolidase activity by serine/threonine phosphorylation.

Arkadiusz Surażyński; Yongmin Liu; Wojciech Miltyk; James M. Phang

Prolidase [E.C. 3.4.13.9], a member of the matrix metalloproteinase (MMP) family, is a manganese‐dependent cytosolic exopeptidase that cleaves imidodipeptides containing C‐terminal proline or hydroxyproline. It plays an important role in collagen metabolism, matrix remodeling and cell growth. Nitric oxide (NO), a versatile signaling molecule, regulates many processes including collagen synthesis and matrix remodeling and, thereby, may modulate angiogenesis, tumor invasiveness, and metastasis. Thus, we considered that prolidase may be an important target of NO regulation. In our study, SIN I and DETA/NO were used as NO donors. Both donors increased prolidase activity in a time‐dependent and dose‐dependent manner. Prolidase activity increased not only with NO donors but also with endogenous NO in cells transfected with iNOS. The effect of iNOS was abolished by treatment with S‐methylisothiourea (SMT), a selective inhibitor of iNOS. However, with either exogenous or endogenous sources of NO, the increase in prolidase activity was not accompanied by increased prolidase expression. Therefore, we suspected phosphorylation of prolidase as a potential mechanism regulating enzyme activation. We observed increased serine/threonine phosphorylation on prolidase protein in cells treated with NO donors and in cells transfected with iNOS. To determinate the pathways that may mediate prolidase induction by NO, we first used 8‐Br‐cGMP, a cGMP agonist, and found that 8‐Br‐cGMP strongly and rapidly stimulated prolidase activity accompanied by increased phosphorylation. Rp‐8‐Br‐pCPT‐cGMP, an inhibitor of cGMP, reduced NO donor‐stimulated prolidase activity to control levels. To test wheher the MAPK pathway is involved in this NO‐dependent activation, we used an ERK1/2 inhibitor and found that it had no effect on prolidase activity increased by NO donors. These results demonstrate that NO stimulates prolidase activity by increasing serine/threonine phosphorylation through PKG‐cGMP pathway, but independent of MAPK and suggest an interaction between inflammatory signaling pathways and regulation of the terminal step of matrix degradation. J. Cell. Biochem.


Natural Product Research | 2010

Dual effects of ouabain, digoxin and proscillaridin A on the regulation of apoptosis in human fibroblasts.

Katarzyna Winnicka; Krzysztof Bielawski; Anna Bielawska; Wojciech Miltyk

In this study, we looked at the effect of ouabain, digoxin and proscillaridin A on human fibroblasts. These data show that low concentrations of ouabain, digoxin and proscillaridin A can activate proliferation of human fibroblasts, suggesting that the Na+, K+-adenosine triphosphatase complex may act as a transducing receptor. It was shown that 30 nM ouabain, digoxin and proscillaridin A stimulated an antiapoptotic action by the increase in the level of phosphorylated extracellular signal-regulated kinases (P-ERK 1/2). Ouabain, digoxin and proscillaridin A only at the relatively high concentration of 300 nM increased intracellular Ca2+ concentration, activated caspase-3 and induced apoptosis in human fibroblasts. In terms of reduction in cell viability, antiproliferative and apoptotic activity, these cardiac glycosides rank in the order proscillaridin A >digoxin >ouabain.


Molecular and Cellular Biochemistry | 2008

Protective effect of hyaluronic acid on interleukin-1-induced deregulation of β1-integrin and insulin-like growth factor-I receptor signaling and collagen biosynthesis in cultured human chondrocytes

Ewa Karna; Wojciech Miltyk; Arkadiusz Surażyński; Jerzy Pałka

The mechanism of protective action of hyaluronic acid (HA) on collagen metabolism disturbances in tissues during inflammation is not known. Insulin-like growth factor-I (IGF-I) receptor and β1-integrin receptor signaling plays an important role in the regulation of collagen biosynthesis at both transcriptional and post-transcriptional levels. The present study was undertaken to evaluate the effect of IL-1β (inductor of experimental inflammation) on the signaling pathways as well as on collagen biosynthesis, gelatinases and prolidase activity in cultured human chondrocytes and the effect of HA on these processes. It was found that IL-1β-dependent inhibition of collagen biosynthesis was accompanied by increase in β1-integrin receptor, NF-kB expressions, and increase in phosphorylation of FAK, that resulted in stimulation of metalloproteinase MMP-2 and MMP-9 activities, but not prolidase activity and expression. Simultaneously, decrease in expression of IGF-I receptor and phosphorylation of Akt and p38 were found. All those processes were counteracted by HA. This suggests that cross talk between β1-integrin and IGF-I receptors is disturbed by IL-1β, and HA recovers their proper signaling in cultured chondrocytes. We propose that IGF-I receptor and β1-integrin signaling may play an important role in protective effect of hyaluronic acid on interleukin-1-induced inhibition of collagen biosynthesis in cultured human chondrocytes.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2000

Potential role of pyrroline 5-carboxylate in regulation of collagen biosynthesis in cultured human skin fibroblasts

Wojciech Miltyk; Jerzy Pałka

Although insulin-like growth factor-I (IGF-I) is known as an important stimulator of collagen biosynthesis in collagen-producing cells, the mechanism and endpoints by which it regulate the process remain largely unknown. Serum of acutely fasted rats contained reduced amount of IGF-I (72+/-16 ng/ml) and showed about 75% reduced ability to stimulate collagen and DNA synthesis in confluent human skin fibroblasts in comparison to the effect of control rat serum (IGF-I, 168+/-19 ng/ml). An addition of IGF-I (at least 40 ng/ml) to fasted rat serum restored its mitogenic activity but could not restore its ability to stimulate collagen biosynthesis to control values during 24 h of incubation. However, when the cells were incubated in fasted rat serum supplemented with 40 ng/ml of IGF-I for 48 h, collagen biosynthesis was restored to control values. It suggests that the stimulatory role of IGF-I in collagen biosynthesis undergo indirectly. We considered pyrroline-5-carboxylate (P5C) as a candidate to play a direct role in this process. Since IGF-I and P5C are known to be decreased in serum of fasted rats it seems that the action of IGF-I on collagen biosynthesis may involve participation of P5C. We have found that serum of fasted rats (showing low level of P5C) supplemented with 1 mmol/l P5C induced collagen biosynthesis in confluent human skin fibroblasts during 24 h to control values. Supporting evidence comes from the experiment showing stimulatory action of P5C on collagen biosynthesis in fibroblasts cultured in serum-free medium. Our results postulate potential role of P5C in regulation of collagen biosynthesis and indicate participation of this molecule in the pathway of IGF-I action in this process.


European Journal of Pharmacology | 2010

Prolidase-dependent regulation of TGF c and TGF β receptor expressions in human skin fibroblasts

Arkadiusz Surażyński; Wojciech Miltyk; Izabela Prokop; Jerzy Pałka

Transforming growth factor beta 1 (TGF β1) is a protein that in most cells control proliferation and differentiation. One of the best characterized functions of TGF β1 is stimulation of collagen biosynthesis that may lead to tissue fibrosis. Several reports suggest that prolidase, through regulation of expression of growth factors and transcription factors, e.g. vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1 α) may be important in many physiologic and pathophysiologic processes like: wound healing, inflammation and angiogenesis. We found that inhibitors of prolidase activity (N-benzyloxycarbonyl-l-proline, Cbz-Pro and phosphoenolopyruvate, PEP) induced decrease in TGF β1 and its receptor expressions. On the other hand, products of prolidase catalytic activity, proline (Pro) and hydroxyproline (HyPro) induced increase in the amount of TGF β1 and TGF β receptors. Simultaneously, inhibitors of prolidase induced down-regulation of expression of the phospho-AKT. An addition of Pro or HyPro to the cells induced increase in the expression of phospho-AKT. An important transcription factor involved in signal induced by TGF β receptor is mammalian target of rapamycin (mTOR). We found that prolidase inhibitors induced decrease in the expression of phospho-mTOR, while Pro or HyPro counteracted the effect. Rapamycin (pharmacological inhibitor of mTOR) resulted in decrease in prolidase activity. The down-regulation of phospho-mTOR by rapamycin contributed to down-regulation of prolidase activity suggesting its important role in prolidase-dependent function. It seems, that products of prolidase activity, Pro or HyPro may act as an interface between mTOR and phospho-mTOR in regulation of numerous TGF β receptor-dependent functions.

Collaboration


Dive into the Wojciech Miltyk's collaboration.

Top Co-Authors

Avatar

Jerzy Pałka

Medical University of Białystok

View shared research outputs
Top Co-Authors

Avatar

Arkadiusz Surażyński

Medical University of Białystok

View shared research outputs
Top Co-Authors

Avatar

Slawomir Wolczynski

Medical University of Białystok

View shared research outputs
Top Co-Authors

Avatar

Ewa Karna

Medical University of Białystok

View shared research outputs
Top Co-Authors

Avatar

Urszula Czyzewska

Medical University of Białystok

View shared research outputs
Top Co-Authors

Avatar

Katarzyna Winnicka

Medical University of Białystok

View shared research outputs
Top Co-Authors

Avatar

Ilona Zaręba

Medical University of Białystok

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Markowska

Medical University of Białystok

View shared research outputs
Top Co-Authors

Avatar

Anna Bielawska

Medical University of Białystok

View shared research outputs
Top Co-Authors

Avatar

Izabela Prokop

Medical University of Białystok

View shared research outputs
Researchain Logo
Decentralizing Knowledge