Wojciech Rode
Nencki Institute of Experimental Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wojciech Rode.
Analytica Chimica Acta | 2015
Justyna Sekuła; Joanna Nizioł; Wojciech Rode; Tomasz Ruman
Preparation is described of a durable surface of cationic gold nanoparticles (AuNPs), covering commercial and custom-made MALDI targets, along with characterization of the nanoparticle surface properties and examples of the use in MS analyses and MS imaging (IMS) of low molecular weight (LMW) organic compounds. Tested compounds include nucleosides, saccharides, amino acids, glycosides, and nucleic bases for MS measurements, as well as over one hundred endogenous compounds in imaging experiment. The nanoparticles covering target plate were enriched in sodium in order to promote sodium-adduct formation. The new surface allows fast analysis, high sensitivity of detection and high mass determination accuracy. Example of application of new Au nanoparticle-enhanced target for fast and simple MS imaging of a fingerprint is also presented.
Molecular Cancer Therapeutics | 2009
Rita Humeniuk; Lata G. Menon; Prasun J. Mishra; Richard Gorlick; Rebecca Sowers; Wojciech Rode; Giuseppe Pizzorno; Yung-Chi Cheng; Nancy E. Kemeny; Joseph R. Bertino; Debabrata Banerjee
5-Fluorouracil (5-FU) continues to be widely used for treatment of gastrointestinal cancers. Because many tumors show primary or acquired resistance, it is important to understand the molecular basis underlying the mechanism of resistance to 5-FU. In addition to its effect on thymidylate synthase inhibition and DNA synthesis, 5-FU may also influence RNA metabolism. Our previous studies revealed that colorectal cancer cells resistant to bolus 5-FU (HCT-8/4hFU) showed significantly decreased incorporation of the drug into RNA. Resistance to bolus 5-FU was associated with lower expression of UMP kinase (UMPK), an enzyme that plays an important role in the activation of 5-FU to 5-FUTP and its incorporation into RNA. Activities of other 5-FU–metabolizing enzymes (e.g., thymidine kinase, uridine phosphorylase, thymidine phosphorylase, and orotate phosphoribosyltransferase) remained unchanged between sensitive and resistant cell lines. Herein, we show that UMPK down-regulation in 5-FU–sensitive cells (HCT-8/P) induces resistance to bolus 5-FU treatment. Moreover, HCT-8/4hFU cells are even more cross-resistant to treatment with 5-fluorouridine, consistent with the current understanding of 5-fluorouridine as a RNA-directed drug. Importantly, colorectal cancer hepatic metastases isolated from patients clinically resistant to weekly bolus 5-FU/leucovorin treatment exhibited decreased mRNA expression of UMPK but not thymidylate synthase or dihydropyrimidine dehydrogenase compared with tumor samples of patients not previously exposed to 5-FU. Our findings provide new insights into the mechanisms of acquired resistance to 5-FU in colorectal cancer and implicate UMPK as an important mechanism of clinical resistance to pulse 5-FU treatment in some patients.[Mol Cancer Ther 2009;8(4):OF1–8]
Biochemical Pharmacology | 1983
Malgorzata Jastreboff; Barbara Kȩdzierska; Wojciech Rode
Thymidylate synthetase from 5-fluorodeoxyuridine-resistant Ehrlich ascites carcinoma cells was purified to a state close to electrophoretical homogeneity (sp. act. = 1.3 mumoles/min/mg protein) and studied in parallel with the homogeneous preparation of the enzyme from the parental Ehrlich ascites carcinoma cells. The enzyme from the resistant cells compared to that from the parental cells showed: (i) a higher turnover number (at least 91 against 31 min-1), (ii) a higher inhibition constant (19 against 1.9 nM) for FdUMP (a tight-binding inhibitor of both enzymes), (iii) a lower activation energy at temps above 36 degrees (1.37 against 2.59 kcal/mole), and (iv) a lower inhibition constant (26 against 108 microM) for dTMP, inhibiting both enzymes competitively vs dUMP.
Analytical Chemistry | 2013
Joanna Nizioł; Wojciech Rode; Barbara Laskowska; Tomasz Ruman
Preparation is described of the surface of the first monoisotopic cationic (109)Ag nanoparticles (AgNPs), covering commercial and modified MALDI targets, along with examples of the use in MS analyses of various low-molecular-weight (LMW) organic compounds, including alkaloids, saccharides, amino acids, nucleosides, nucleic bases, and other organics. The new targets, compared to those covered by naturally occurring silver, allow analyte detection with higher sensitivity, mass accuracy, and resolution. Moreover, monoisotopic triatomic silver cations (109)Ag(3)(+) appear to be applicable for analyte cationization.
Biochemical Pharmacology | 1982
Malgorzata Jastreboff; Barbara Kedzierska; Wojciech Rode
Ehrlich ascites carcinoma thymidylate synthetase was purified to electrophoretic homogeneity by affinity chromatography on 10-formyl-5,8-dideazofolate-ethyl-Sepharose. Electrophoretic analysis of the formation of the enzyme-5-fluorodeoxyuridylate-5,10-methylenetetrahydrofolate complexes showed the presence of two binding sites for 5-fluorodeoxyuridylate on the enzyme molecule. Molecular weight of the native enzyme was found to be 78,5000, whereas that of its monomer was 38, 500. The apparent Michaelis constants for dUMP and (+/-)-L-5,10-methylenetetrahydrofolate were 1.3 +/- 0.4 and 32.2 +/- 0.7 micrometers respectively. Phosphate acted as a weak inhibitor, competitive toward dUMP. The enzyme reaction exhibited a temperature-dependent change of activation energy, reflected in the binding affinity of dUMP, with a transitional temperature of 35.8 degrees. Both Mg2+ and MgATP2- were strong activators of the enzyme, MgATP2- being more effective.
Bioorganic Chemistry | 2010
Tomasz Ruman; Karolina Długopolska; Agata Jurkiewicz; Dagmara Rut; Tomasz Frączyk; Joanna Cieśla; Andrzej Leś; Zbigniew Szewczuk; Wojciech Rode
In search of an activity-preserving protein thiophosphorylation method, with thymidylate synthase recombinant protein used as a substrate, potassium thiophosphoramidate and diammonium thiophosphoramidate salts in Tris- and ammonium carbonate based buffer solutions were employed, proving to serve as a non-destructive environment. Using potassium phosphoramidate or diammonium thiophosphoramidate, a series of phosphorylated and thiophosphorylated amino acid derivatives was prepared, helping, together with computational (using density functional theory, DFT) estimation of (31)P NMR chemical shifts, to assign thiophosphorylated protein NMR resonances and prove the presence of thiophosphorylated lysine, serine and histidine moieties. Methods useful for prediction of (31)P NMR chemical shifts of thiophosphorylated amino acid moieties, and thiophosphates in general, are also presented. The preliminary results obtained from trypsin digestion of enzyme shows peak at m/z 1825.805 which is in perfect agreement with the simulated isotopic pattern distributions for monothiophosphate of TVQQQVHLNQDEYK where thiophosphate moiety is attached to histidine (His(26)) or lysine (Lys(33)) side-chain.
Bioscience Reports | 2010
Karolina Kowalewska; Piotr Stefanowicz; Tomasz Ruman; Tomasz Frączyk; Wojciech Rode; Zbigniew Szewczuk
Phosphorylation of proteins is an essential signalling mechanism in eukaryotic and prokaryotic cells. Although N-phosphorylation of basic amino acid is known for its importance in biological systems, it is still poorly explored in terms of products and mechanisms. In the present study, two MS fragmentation methods, ECD (electron-capture dissociation) and CID (collision-induced dissociation), were tested as tools for analysis of N-phosphorylation of three model peptides, RKRSRAE, RKRARKE and PLSRTLSVAAKK. The peptides were phosphorylated by reaction with monopotassium phosphoramidate. The results were confirmed by 1H NMR and 31P NMR studies. The ECD method was found useful for the localization of phosphorylation sites in unstable lysine-phosphorylated peptides. Its main advantage is a significant reduction of the neutral losses related to the phosphoramidate moiety. Moreover, the results indicate that the ECD–MS may be useful for analysis of regioselectivity of the N-phosphorylation reaction. Stabilities of the obtained lysine-phosphorylated peptides under various conditions were also tested.
Parasitology | 2004
Magdalena Dabrowska; Elżbieta Jagielska; Cieśla J; Płucienniczak A; Jan Kwiatowski; Mariusz Wranicz; Pascal Boireau; Wojciech Rode
The persistent expression of thymidylate synthase activity has previously been demonstrated not only in adult forms, but also in non-developing muscle larvae of Trichinella spiralis and T. pseudospiralis, pointing to an unusual pattern of cell cycle regulation, and prompting further studies on the developmental pattern of T. spiralis thymidylate synthase gene expression. The enzyme cDNA was cloned and sequenced, allowing the characterization of a single open reading frame of 307 amino acids coding for a putative protein of 35,582 Da molecular weight. The amino acid sequence of the parasite enzyme was analysed, the consensus phylogenetic tree built and its stability assessed. The aa sequence identity with thymidylate synthase was confirmed by the enzymatic activity of the recombinant protein expressed in E. coli. As compared with the enzyme purified from muscle larvae, it showed apparently similar Vmax value, but higher Km(app) values desscribing interactions with dUMP (28.8 microM vs. 3.9 microM) and (6RS,alphaS)-N(5,10)-methylenetetrahydrofolate (383 microM vs. 54.7 microM). With the coding region used as a probe, thymidylate synthase mRNA levels, relative to 18S rRNA, were found to be similar in muscle larvae, adult forms and newborn larvae, in agreement with muscle larvae cells being arrested in the cell cycle.
Cancer Letters | 2009
Magdalena Dabrowska; Grazyna Mosieniak; Janusz Skierski; Ewa Sikora; Wojciech Rode
Human colorectal adenocarcinoma C85 cells, treated with high dose methotrexate (1 microM; IC(50)=51 nM), undergo accelerated senescence, as the cells (i) are growth arrested at the G(1) and S phases of the cell cycle, (ii) are SA-beta-galactosidase-positive, (iii) show induced expression of p21(waf1/cip1) and decreased expression of p16(INK4a), and (iv) show DNA synthesis continued at the reduced level. The fraction of C85 cells with DNA content higher than 4N is maintained at the same level (14%) in cells untreated, as well as regrown after the treatment. Multinucleation is found as the main karyotypic abnormality.
Tumor Biology | 2011
Magdalena Dabrowska; Marek Skoneczny; Wojciech Rode
Cellular functions accompanying establishment of premature senescence in methotrexate-treated human colon cancer C85 cells are deciphered in the present study from validated competitive expression microarray data, analyzed with the use of Ingenuity Pathways Analysis (IPA) software. The nitrosative/oxidative stress, inferred from upregulated expression of inducible nitric oxide synthase (iNOS) and mitochondrial dysfunction-associated genes, including monoamine oxidases MAOA and MAOB, β-amyloid precursor protein (APP) and presenilin 1 (PSEN1), is identified as the main determinant of signaling pathways operating during senescence establishment. Activation of p53-signaling pathway is found associated with both apoptotic and autophagic components contributing to this process. Activation of nuclear factor κB (NF-κB), resulting from interferon γ (IFNγ), integrin, interleukin 1β (IL-1β), IL-4, IL-13, IL-22, Toll-like receptors (TLRs) 1, 2 and 3, growth factors and tumor necrosis factor (TNF) superfamily members signaling, is found to underpin inflammatory properties of senescent C85 cells. Upregulation of p21-activated kinases (PAK2 and PAK6), several Rho molecules and myosin regulatory light chains MYL12A and MYL12B, indicates acquisition of motility by those cells. Mitogen-activated protein kinase p38 MAPK β, extracellular signal-regulated kinases ERK2 and ERK5, protein kinase B AKT1, as well as calcium, are identified as factors coordinating signaling pathways in senescent C85 cells.