Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolf Mueller is active.

Publication


Featured researches published by Wolf Mueller.


Acta Neuropathologica | 2008

Analysis of the IDH1 codon 132 mutation in brain tumors

Jörg Balss; Jochen Meyer; Wolf Mueller; Andrey Korshunov; Christian Hartmann; Andreas von Deimling

A recent study reported on mutations in the active site of the isocitrate dehydrogenase (IDH1) gene in 12% of glioblastomas. All mutations detected resulted in an amino acid exchange in position 132. We analyzed the genomic region spanning wild type R132 of IDH1 by direct sequencing in 685 brain tumors including 41 pilocytic astrocytomas, 12 subependymal giant cell astrocytomas, 7 pleomorphic xanthoastrocytomas, 93 diffuse astrocytomas, 120 adult glioblastomas, 14 pediatric glioblastomas, 105 oligodendrogliomas, 83 oligoastrocytomas, 31 ependymomas, 58 medulloblastomas, 9 supratentorial primitive neuroectodermal tumors, 17 schwannomas, 72 meningiomas and 23 pituitary adenomas. A total of 221 somatic IDH1 mutations were detected and the highest frequencies occurred in diffuse astrocytomas (68%), oligodendrogliomas (69%), oligoastrocytomas (78%) and secondary glioblastomas (88%). Primary glioblastomas and other entities were characterized by a low frequency or absence of mutations in amino acid position 132 of IDH1. The very high frequency of IDH1 mutations in WHO grade II astrocytic and oligodendroglial gliomas suggests a role in early tumor development.


Acta Neuropathologica | 2009

Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas

Christian Hartmann; Jochen Meyer; Jörg Balss; David Capper; Wolf Mueller; Arne Christians; Jörg Felsberg; Marietta Wolter; Christian Mawrin; Wolfgang Wick; Michael Weller; Christel Herold-Mende; Andreas Unterberg; Judith W. M. Jeuken; Peter Wesseling; Guido Reifenberger; Andreas von Deimling

Somatic mutations in the IDH1 gene encoding cytosolic NADP+-dependent isocitrate dehydrogenase have been shown in the majority of astrocytomas, oligodendrogliomas and oligoastrocytomas of WHO grades II and III. IDH2 encoding mitochondrial NADP+-dependent isocitrate dehydrogenase is also mutated in these tumors, albeit at much lower frequencies. Preliminary data suggest an importance of IDH1 mutation for prognosis showing that patients with anaplastic astrocytomas, oligodendrogliomas and oligoastrocytomas harboring IDH1 mutations seem to fare much better than patients without this mutation in their tumors. To determine mutation types and their frequencies, we examined 1,010 diffuse gliomas. We detected 716 IDH1 mutations and 31 IDH2 mutations. We found 165 IDH1 (72.7%) and 2 IDH2 mutations (0.9%) in 227 diffuse astrocytomas WHO grade II, 146 IDH1 (64.0%) and 2 IDH2 mutations (0.9%) in 228 anaplastic astrocytomas WHO grade III, 105 IDH1 (82.0%) and 6 IDH2 mutations (4.7%) in 128 oligodendrogliomas WHO grade II, 121 IDH1 (69.5%) and 9 IDH2 mutations (5.2%) in 174 anaplastic oligodendrogliomas WHO grade III, 62 IDH1 (81.6%) and 1 IDH2 mutations (1.3%) in 76 oligoastrocytomas WHO grade II and 117 IDH1 (66.1%) and 11 IDH2 mutations (6.2%) in 177 anaplastic oligoastrocytomas WHO grade III. We report on an inverse association of IDH1 and IDH2 mutations in these gliomas and a non-random distribution of the mutation types within the tumor entities. IDH1 mutations of the R132C type are strongly associated with astrocytoma, while IDH2 mutations predominantly occur in oligodendroglial tumors. In addition, patients with anaplastic glioma harboring IDH1 mutations were on average 6 years younger than those without these alterations.


Cancer Research | 2006

A Hypermutation Phenotype and Somatic MSH6 Mutations in Recurrent Human Malignant Gliomas after Alkylator Chemotherapy

Chris Hunter; Raffaella Smith; Daniel P. Cahill; Philip Stephens; Claire Stevens; Jon Teague; Christopher Greenman; Sarah Edkins; Graham R. Bignell; Helen Davies; Sarah O'Meara; Adrian Parker; Tim Avis; Syd Barthorpe; Lisa Brackenbury; Gemma Buck; Adam Butler; Jody Clements; Jennifer Cole; Ed Dicks; Simon A. Forbes; Matthew Gorton; Kristian Gray; Kelly Halliday; Rachel Harrison; Katy Hills; Jonathon Hinton; Andy Jenkinson; David Jones; Vivienne Kosmidou

Malignant gliomas have a very poor prognosis. The current standard of care for these cancers consists of extended adjuvant treatment with the alkylating agent temozolomide after surgical resection and radiotherapy. Although a statistically significant increase in survival has been reported with this regimen, nearly all gliomas recur and become insensitive to further treatment with this class of agents. We sequenced 500 kb of genomic DNA corresponding to the kinase domains of 518 protein kinases in each of nine gliomas. Large numbers of somatic mutations were observed in two gliomas recurrent after alkylating agent treatment. The pattern of mutations in these cases showed strong similarity to that induced by alkylating agents in experimental systems. Further investigation revealed inactivating somatic mutations of the mismatch repair gene MSH6 in each case. We propose that inactivating somatic mutations of MSH6 confer resistance to alkylating agents in gliomas in vivo and concurrently unleash accelerated mutagenesis in resistant clones as a consequence of continued exposure to alkylating agents in the presence of defective mismatch repair. The evidence therefore suggests that when MSH6 is inactivated in gliomas, alkylating agents convert from induction of tumor cell death to promotion of neoplastic progression. These observations highlight the potential of large scale sequencing for revealing and elucidating mutagenic processes operative in individual human cancers.


Cancer Cell | 2008

Yes and PI3K bind CD95 to signal invasion of glioblastoma.

Susanne Kleber; Ignacio Sancho-Martinez; Benedict Wiestler; Alexandra Beisel; Christian Gieffers; Oliver Hill; Meinolf Thiemann; Wolf Mueller; Jaromir Sykora; Andreas Kuhn; Nina Schreglmann; Elisabeth Letellier; Cecilia Zuliani; Stefan Klussmann; Marcin Teodorczyk; Hermann Josef Gröne; Tom M. Ganten; Holger Sültmann; Jochen Tüttenberg; Andreas von Deimling; Anne Régnier-Vigouroux; Christel Herold-Mende; Ana Martin-Villalba

Invasion of surrounding brain tissue by isolated tumor cells represents one of the main obstacles to a curative therapy of glioblastoma multiforme. Here we unravel a mechanism regulating glioma infiltration. Tumor interaction with the surrounding brain tissue induces CD95 Ligand expression. Binding of CD95 Ligand to CD95 on glioblastoma cells recruits the Src family member Yes and the p85 subunit of phosphatidylinositol 3-kinase to CD95, which signal invasion via the glycogen synthase kinase 3-beta pathway and subsequent expression of matrix metalloproteinases. In a murine syngeneic model of intracranial GBM, neutralization of CD95 activity dramatically reduced the number of invading cells. Our results uncover CD95 as an activator of PI3K and, most importantly, as a crucial trigger of basal invasion of glioblastoma in vivo.


American Journal of Pathology | 2002

Genetic Signature of Oligoastrocytomas Correlates with Tumor Location and Denotes Distinct Molecular Subsets

Wolf Mueller; Christian Hartmann; Annegret Hoffmann; Wolfgang R. Lanksch; Jürgen Kiwit; Jörg C. Tonn; Julian Veelken; Johannes Schramm; Michael Weller; Otmar D. Wiestler; David N. Louis; Andreas von Deimling

Oligoastrocytomas are heterogeneous tumors that have molecular features that overlap with either oligodendrogliomas or astrocytomas. Differences in the frequency of chromosomal losses of 1p and 19q in oligodendrogliomas are related to tumor location, with a low rate of allelic loss in tumors of the temporal and a high rate in tumors of the frontal, parietal, and occipital lobes. To test the possibility of regional molecular heterogeneity in oligoastrocytoma, we examined a series of 203 gliomas including 68 oligoastrocytomas and two control groups of 73 oligodendrogliomas and 62 astrocytomas for allelic losses of chromosomal arms 1p and 19q, and TP53 mutations, and compared these data with tumor localization. Common molecular alterations were found in oligodendrogliomas and oligoastrocytomas arising in extratemporal sites. In respect to the molecular parameters analyzed, temporal oligoastrocytomas were either indistinguishable from astrocytoma or similar to temporal oligodendrogliomas. Oligodendroglial neoplasms can thus be separated into three molecular subsets, two of which include lesions with the morphological features of oligodendrogliomas and oligoastrocytomas and one resembling temporal oligoastrocytoma. Molecular subclassification thus unifies previous findings about prognosis, behavior, response to therapy, genotype, and location in oligodendroglial tumors.


Acta Neuropathologica | 2014

Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma

Felix Sahm; David E. Reuss; Christian Koelsche; David Capper; Jens Schittenhelm; Stephanie Heim; David T. W. Jones; Stefan M. Pfister; Christel Herold-Mende; Wolfgang Wick; Wolf Mueller; Christian Hartmann; Werner Paulus; Andreas von Deimling

Astrocytoma and oligodendroglioma are histologically and genetically well-defined entities. The majority of astrocytomas harbor concurrent TP53 and ATRX mutations, while most oligodendrogliomas carry the 1p/19q co-deletion. Both entities share high frequencies of IDH mutations. In contrast, oligoastrocytomas (OA) appear less clearly defined and, therefore, there is an ongoing debate whether these tumors indeed constitute an entity or whether they represent a mixed bag containing both astrocytomas and oligodendrogliomas. We investigated 43 OA diagnosed in different institutions employing histology, immunohistochemistry and in situ hybridization addressing surrogates for the molecular genetic markers IDH1R132H, TP53, ATRX and 1p/19q loss. In all but one OA the combination of nuclear p53 accumulation and ATRX loss was mutually exclusive with 1p/19q co-deletion. In 31/43 OA, only alterations typical for oligodendroglioma were observed, while in 11/43 OA, only indicators for mutations typical for astrocytomas were detected. A single case exhibited a distinct pattern, nuclear expression of p53, ATRX loss, IDH1 mutation and partial 1p/19q loss. However, this was the only patient undergoing radiotherapy prior to surgery, possibly contributing to the acquisition of this uncommon combination. In OA with oligodendroglioma typical alterations, the portions corresponding to astrocytic part were determined as reactive, while in OA with astrocytoma typical alterations the portions corresponding to oligodendroglial differentiation were neoplastic. These data provide strong evidence against the existence of an independent OA entity.


Oncogene | 2007

Downregulation of RUNX3 and TES by hypermethylation in glioblastoma

Wolf Mueller; Catherine L. Nutt; Mathias Ehrich; Markus J. Riemenschneider; A. Von Deimling; D. van den Boom; David N. Louis

Glioblastoma, the most aggressive and least treatable form of malignant glioma, is the most common human brain tumor. Although many regions of allelic loss occur in glioblastomas, relatively few tumor suppressor genes have been found mutated at such loci. To address the possibility that epigenetic alterations are an alternative means of glioblastoma gene inactivation, we coupled pharmacological manipulation of methylation with gene profiling to identify potential methylation-regulated, tumor-related genes. Duplicates of three short-term cultured glioblastomas were exposed to 5 μM 5-aza-dC for 96 h followed by cRNA hybridization to an oligonucleotide microarray (Affymetrix U133A). We based candidate gene selection on bioinformatics, reverse transcription-polymerase chain reaction (RT–PCR), bisulfite sequencing, methylation-specific PCR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Two genes identified in this manner, RUNX3 and Testin (TES), were subsequently shown to harbor frequent tumor-specific epigenetic alterations in primary glioblastomas. This overall approach therefore provides a powerful means to identify candidate tumor-suppressor genes for subsequent evaluation and may lead to the identification of genes whose epigenetic dysregulation is integral to glioblastoma tumorigenesis.


British Journal of Cancer | 2001

INI1 mutations in meningiomas at a potential hotspot in exon 9

U Schmitz; Wolf Mueller; M Weber; N Sévenet; Olivier Delattre; A. von Deimling

Rhabdoid tumours have been shown to carry somatic mutations in the INI1 (SMARCB1/hSNF5) gene. A considerable fraction of these tumours exhibit allelic losses on chromosome 22. Allelic loss on 22q also is characteristic for meningiomas, however most of these alterations are considered to be associated with mutations of the NF2 gene. We examined a series of 126 meningiomas for alterations in the INI1 gene. Four identical somatic mutations in exon 9 were detected resulting in an exchange of Arg to His in position 377 of INI1. Our observations were reproduced both by using DNA from a new round of extraction and by employing overlapping primers. This mutational hotspot therefore appears to be an important target in the formation of a fraction of meningiomas. In addition, 4 novel polymorphisms of INI1 were characterized. Our data indicate that the INI1 is a second tumour suppressor gene on chromosome 22 that may be important for the genesis of meningiomas.


Oncologist | 2012

A Second-Generation MicroRNA-Based Assay for Diagnosing Tumor Tissue Origin

Eti Meiri; Wolf Mueller; Shai Rosenwald; Merav Zepeniuk; Elizabeth Klinke; Tina Bocker Edmonston; Margot Werner; Ulrike Lass; Iris Barshack; Meora Feinmesser; Monica Huszar; Franz Fogt; Karin Ashkenazi; Mats Sanden; Eran Goren; Nir Dromi; Orit Zion; Ilanit Burnstein; Ayelet Chajut; Yael Spector; Ranit Aharonov

BACKGROUND Cancers of unknown primary origin (CUP) constitute 3%-5% (50,000 to 70,000 cases) of all newly diagnosed cancers per year in the United States. Including cancers of uncertain primary origin, the total number increases to 12%-15% (180,000 to 220,000 cases) of all newly diagnosed cancers per year in the United States. Cancers of unknown/uncertain primary origins present major diagnostic and clinical challenges because the tumor tissue of origin is crucial for selecting optimal treatment. MicroRNAs are a family of noncoding, regulatory RNA genes involved in carcinogenesis. MicroRNAs that are highly stable in clinical samples and tissue specific serve as ideal biomarkers for cancer diagnosis. Our first-generation assay identified the tumor of origin based on 48 microRNAs measured on a quantitative real-time polymerase chain reaction platform and differentiated 25 tumor types. METHODS We present here the development and validation of a second-generation assay that identifies 42 tumor types using a custom microarray. A combination of a binary decision-tree and a k-nearest-neighbor classifier was developed to identify the tumor of origin based on the expression of 64 microRNAs. RESULTS Overall assay sensitivity (positive agreement), measured blindly on a validation set of 509 independent samples, was 85%. The sensitivity reached 90% for cases in which the assay reported a single answer (>80% of cases). A clinical validation study on 52 true CUP patients showed 88% concordance with the clinicopathological evaluation of the patients. CONCLUSION The abilities of the assay to identify 42 tumor types with high accuracy and to maintain the same performance in samples from patients clinically diagnosed with CUP promise improved utility in the diagnosis of cancers of unknown/uncertain primary origins.


American Journal of Pathology | 2005

In situ analysis of integrin and growth factor receptor signaling pathways in human glioblastomas suggests overlapping relationships with focal adhesion kinase activation.

Markus J. Riemenschneider; Wolf Mueller; Rebecca A. Betensky; Gayatry Mohapatra; David N. Louis

Deregulated integrin signaling is common in cancers, including glioblastoma. Integrin binding and growth factor receptor signaling activate focal adhesion kinase (FAK) and subsequently up-regulate extracellular regulated kinases (ERK-1/2), leading to cell-cycle progression and cell migration. Most studies of this pathway have used in vitro systems or tumor lysate-based approaches. We examined these pathways primarily in situ using a panel of 30 glioblastomas and gene expression arrays, immunohistochemistry, and fluorescence in situ hybridization, emphasizing the histological distribution of molecular changes. Within individual tumors, increased expression of FAK, p-FAK, paxillin, ERK-1/2, and p-ERK-1/2 occurred in regions of elevated EGFR and/or PDGFRA expression. Moreover, FAK activation levels correlated with EGFR and PDGFRA expression, and p-FAK and EGFR expression co-localized at the single-cell level. In addition, integrin expression was enriched in EGFR/PDGFRA-overexpressing areas but was more regionally confined than FAK, p-FAK, and paxillin. Integrins beta8 and alpha5beta1 were most commonly expressed, often in a perinecrotic or perivascular pattern. Taken together, our data suggest that growth factor receptor overexpression facilitates alterations in the integrin signaling pathway. Thus, FAK may act in glioblastoma as a downstream target of growth factor signaling, with integrins enhancing the impact of such signaling in the tumor microenvironment.

Collaboration


Dive into the Wolf Mueller's collaboration.

Top Co-Authors

Avatar

Andreas von Deimling

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Ulrike Lass

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge