Wolf Reik
Babraham Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wolf Reik.
Nature Reviews Genetics | 2001
Wolf Reik; Jörn Walter
Genomic imprinting affects several dozen mammalian genes and results in the expression of those genes from only one of the two parental chromosomes. This is brought about by epigenetic instructions — imprints — that are laid down in the parental germ cells. Imprinting is a particularly important genetic mechanism in mammals, and is thought to influence the transfer of nutrients to the fetus and the newborn from the mother. Consistent with this view is the fact that imprinted genes tend to affect growth in the womb and behaviour after birth. Aberrant imprinting disturbs development and is the cause of various disease syndromes. The study of imprinting also provides new insights into epigenetic gene modification during development.
Mechanisms of Development | 2002
Petra Hajkova; Sylvia Erhardt; Natasha Lane; Thomas Haaf; Osman El-Maarri; Wolf Reik; Jörn Walter; M. Azim Surani
Genome-wide epigenetic reprogramming in mammalian germ cells, zygote and early embryos, plays a crucial role in regulating genome functions at critical stages of development. We show here that mouse primordial germ cells (PGCs) exhibit dynamic changes in epigenetic modifications between days 10.5 and 12.5 post coitum (dpc). First, contrary to previous suggestions, we show that PGCs do indeed acquire genome-wide de novo methylation during early development and migration into the genital ridge. However, following their entry into the genital ridge, there is rapid erasure of DNA methylation of regions within imprinted and non-imprinted loci. For most genes, the erasure commences simultaneously in PGCs in both male and female embryos, which is completed within 1 day of development. Based on the kinetics of this process, we suggest that this is an active demethylation process initiated upon the entry of PGCs into the gonadal anlagen. The timing of reprogramming in PGCs is crucial since it ensures that germ cells of both sexes acquire an equivalent epigenetic state prior to the differentiation of the definitive male and female germ cells in which new parental imprints are established subsequently. Some repetitive elements, however, show incomplete erasure, which may be essential for chromosome stability and for preventing activation of transposons to reduce the risk of germline mutations. Aberrant epigenetic reprogramming in the germ line would cause the inheritance of epimutations that may have consequences for human diseases as suggested by studies on mouse models.
Nature | 2011
Gabriella Ficz; Miguel R. Branco; Stefanie Seisenberger; Fátima Santos; Felix Krueger; Timothy A. Hore; Cristina Joana Marques; Simon Andrews; Wolf Reik
Methylation at the 5′ position of cytosine in DNA has important roles in genome function and is dynamically reprogrammed during early embryonic and germ cell development. The mammalian genome also contains 5-hydroxymethylcytosine (5hmC), which seems to be generated by oxidation of 5-methylcytosine (5mC) by the TET family of enzymes that are highly expressed in embryonic stem (ES) cells. Here we use antibodies against 5hmC and 5mC together with high throughput sequencing to determine genome-wide patterns of methylation and hydroxymethylation in mouse wild-type and mutant ES cells and differentiating embryoid bodies. We find that 5hmC is mostly associated with euchromatin and that whereas 5mC is under-represented at gene promoters and CpG islands, 5hmC is enriched and is associated with increased transcriptional levels. Most, if not all, 5hmC in the genome depends on pre-existing 5mC and the balance between these two modifications is different between genomic regions. Knockdown of Tet1 and Tet2 causes downregulation of a group of genes that includes pluripotency-related genes (including Esrrb, Prdm14, Dppa3, Klf2, Tcl1 and Zfp42) and a concomitant increase in methylation of their promoters, together with an increased propensity of ES cells for extraembryonic lineage differentiation. Declining levels of TETs during differentiation are associated with decreased hydroxymethylation levels at the promoters of ES cell-specific genes together with increased methylation and gene silencing. We propose that the balance between hydroxymethylation and methylation in the genome is inextricably linked with the balance between pluripotency and lineage commitment.
Current Biology | 2000
Joachim Oswald; Sabine Engemann; Natasha Lane; W Mayer; Alexander Olek; Reinald Fundele; Wendy Dean; Wolf Reik; Jörn Walter
DNA methylation is essential for the control of a number of biological mechanisms in mammals [1]. Mammalian development is accompanied by two major waves of genome-wide demethylation and remethylation: one during germ-cell development and the other after fertilisation [2] [3] [4] [5] [6] [7]. Most previous studies have suggested that the genome-wide demethylation observed after fertilisation occurs passively, that is, by the lack of maintenance methylation following DNA replication and cell division [6] [7], although one other study has reported that replication-independent demethylation may also occur during early embryogenesis [8]. Here, we report that genes that are highly methylated in sperm are rapidly demethylated in the zygote only hours after fertilisation, before the first round of DNA replication commences. By contrast, the oocyte-derived maternal alleles are unaffected by this reprogramming. They either remain methylated after fertilisation or become further methylated de novo. These results provide the first direct evidence for active demethylation of single-copy genes in the mammalian zygote and, moreover, reveal a striking asymmetry in epigenetic methylation reprogramming. Whereas paternally (sperm)-derived sequences are exposed to putative active demethylases in the oocyte cytoplasm, maternally (oocyte)-derived sequences are protected from this reaction. These results, whose generality is supported by findings of Mayer et al. [9], have important implications for the establishment of biparental genetic totipotency after fertilisation, the establishment and maintenance of genomic imprinting, and the reprogramming of somatic cells during cloning.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Wendy Dean; Fátima Santos; Miodrag Stojkovic; Valeri Zakhartchenko; Jörn Walter; Eckhard Wolf; Wolf Reik
Mouse embryos undergo genome-wide methylation reprogramming by demethylation in early preimplantation development, followed by remethylation thereafter. Here we show that genome-wide reprogramming is conserved in several mammalian species and ask whether it also occurs in embryos cloned with the use of highly methylated somatic donor nuclei. Normal bovine, rat, and pig zygotes showed a demethylated paternal genome, suggesting active demethylation. In bovine embryos methylation was further reduced during cleavage up to the eight-cell stage, and this reduction in methylation was followed by de novo methylation by the 16-cell stage. In cloned one-cell embryos there was a reduction in methylation consistent with active demethylation, but no further demethylation occurred subsequently. Instead, de novo methylation and nuclear reorganization of methylation patterns resembling those of differentiated cells occurred precociously in many cloned embryos. Cloned, but not normal, morulae had highly methylated nuclei in all blastomeres that resembled those of the fibroblast donor cells. Our study shows that epigenetic reprogramming occurs aberrantly in most cloned embryos; incomplete reprogramming may contribute to the low efficiency of cloning.
Nature | 2002
Miguel Constância; Myriam Hemberger; Jennifer Hughes; Wendy Dean; Anne Ferguson-Smith; Reinald Fundele; Francesca Stewart; Gavin Kelsey; Abigail Fowden; C.P. Sibley; Wolf Reik
Imprinted genes in mammals are expressed from only one of the parental chromosomes, and are crucial for placental development and fetal growth. The insulin-like growth factor II gene (Igf2) is paternally expressed in the fetus and placenta. Here we show that deletion from the Igf2 gene of a transcript (P0) specifically expressed in the labyrinthine trophoblast of the placenta leads to reduced growth of the placenta, followed several days later by fetal growth restriction. The fetal to placental weight ratio is thus increased in the absence of the P0 transcript. We show that passive permeability for nutrients of the mutant placenta is decreased, but that secondary active placental amino acid transport is initially upregulated, compensating for the decrease in passive permeability. Later the compensation fails and fetal growth restriction ensues. Our study provides experimental evidence for imprinted gene action in the placenta that directly controls the supply of maternal nutrients to the fetus, and supports the genetic conflict theory of imprinting. We propose that the Igf2 gene, and perhaps other imprinted genes, control both the placental supply of, and the genetic demand for, maternal nutrients to the mammalian fetus.
Science | 2010
Suhua Feng; Steven E. Jacobsen; Wolf Reik
Epigenetic modifications of the genome are generally stable in somatic cells of multicellular organisms. In germ cells and early embryos, however, epigenetic reprogramming occurs on a genome-wide scale, which includes demethylation of DNA and remodeling of histones and their modifications. The mechanisms of genome-wide erasure of DNA methylation, which involve modifications to 5-methylcytosine and DNA repair, are being unraveled. Epigenetic reprogramming has important roles in imprinting, the natural as well as experimental acquisition of totipotency and pluripotency, control of transposons, and epigenetic inheritance across generations. Small RNAs and the inheritance of histone marks may also contribute to epigenetic inheritance and reprogramming. Reprogramming occurs in flowering plants and in mammals, and the similarities and differences illuminate developmental and reproductive strategies.
Nature | 2010
Christian Popp; Wendy Dean; Suhua Feng; Shawn J. Cokus; Simon Andrews; Matteo Pellegrini; Steven E. Jacobsen; Wolf Reik
Epigenetic reprogramming including demethylation of DNA occurs in mammalian primordial germ cells (PGCs) and in early embryos, and is important for the erasure of imprints and epimutations, and the return to pluripotency. The extent of this reprogramming and its molecular mechanisms are poorly understood. We previously showed that the cytidine deaminases AID and APOBEC1 can deaminate 5-methylcytosine in vitro and in Escherichia coli, and in the mouse are expressed in tissues in which demethylation occurs. Here we profiled DNA methylation throughout the genome by unbiased bisulphite next generation sequencing in wild-type and AID-deficient mouse PGCs at embryonic day (E)13.5. Wild-type PGCs revealed marked genome-wide erasure of methylation to a level below that of methylation deficient (Np95-/-, also called Uhrf1-/-) embryonic stem cells, with female PGCs being less methylated than male ones. By contrast, AID-deficient PGCs were up to three times more methylated than wild-type ones; this substantial difference occurred throughout the genome, with introns, intergenic regions and transposons being relatively more methylated than exons. Relative hypermethylation in AID-deficient PGCs was confirmed by analysis of individual loci in the genome. Our results reveal that erasure of DNA methylation in the germ line is a global process, hence limiting the potential for transgenerational epigenetic inheritance. AID deficiency interferes with genome-wide erasure of DNA methylation patterns, indicating that AID has a critical function in epigenetic reprogramming and potentially in restricting the inheritance of epimutations in mammals.
Science | 2012
Michael J. Booth; Miguel R. Branco; Gabriella Ficz; David Oxley; Felix Krueger; Wolf Reik; Shankar Balasubramanian
Distinguishing Epigenetic Marks Methylation of the cytosine base in eukaryotic DNA (5mC) is an important epigenetic mark involved in gene silencing and genome stability. Methylated cytosine can be enzymatically oxidized to 5-hydroxymethylcytosine (5hmC), which may function as a distinct epigenetic mark—possibly involved in pluripotency—and it may also be an intermediate in active DNA demethylation. To be able to detect 5hmC genome-wide and at single-base resolution, Booth et al. (p. 934, published online 26 April) developed a 5hmC sequencing chemistry that selectively oxidizes 5hmC to 5-formylcytosine and then to uracil while leaving 5mC unchanged. Using this method, mouse embryonic stem cell genomic DNA was sequenced to reveal that 5hmC is found enriched at intragenic CpG islands and long interspersed nuclear element–1 retrotransposons. A sequencing method can discriminate epigenetically modified cytosine nucleotides within embryonic stem cell DNA. 5-Methylcytosine can be converted to 5-hydroxymethylcytosine (5hmC) in mammalian DNA by the ten-eleven translocation (TET) enzymes. We introduce oxidative bisulfite sequencing (oxBS-Seq), the first method for quantitative mapping of 5hmC in genomic DNA at single-nucleotide resolution. Selective chemical oxidation of 5hmC to 5-formylcytosine (5fC) enables bisulfite conversion of 5fC to uracil. We demonstrate the utility of oxBS-Seq to map and quantify 5hmC at CpG islands (CGIs) in mouse embryonic stem (ES) cells and identify 800 5hmC-containing CGIs that have on average 3.3% hydroxymethylation. High levels of 5hmC were found in CGIs associated with transcriptional regulators and in long interspersed nuclear elements, suggesting that these regions might undergo epigenetic reprogramming in ES cells. Our results open new questions on 5hmC dynamics and sequence-specific targeting by TETs.
Nature Communications | 2011
Mark Wossidlo; Toshinobu Nakamura; Konstantin Lepikhov; C. Joana Marques; Valeri Zakhartchenko; Michele Boiani; Julia Arand; Toru Nakano; Wolf Reik; Jörn Walter
The epigenomes of early mammalian embryos are extensively reprogrammed to acquire a totipotent developmental potential. A major initial event in this reprogramming is the active loss/demethylation of 5-methylcytosine (5mC) in the zygote. Here, we report on findings that link this active demethylation to molecular mechanisms. We detect 5-hydroxymethylcytosine (5hmC) as a novel modification in mouse, bovine and rabbit zygotes. On zygotic development 5hmC accumulates in the paternal pronucleus along with a reduction of 5mC. A knockdown of the 5hmC generating dioxygenase Tet3 simultaneously affects the patterns of 5hmC and 5mC in the paternal pronucleus. This finding links the loss of 5mC to its conversion into 5hmC. The maternal pronucleus seems to be largely protected against this mechanism by PGC7/Dppa3/Stella, as in PGC7 knockout zygotes 5mC also becomes accessible to oxidation into 5hmC. In summary, our data suggest an important role of 5hmC and Tet3 for DNA methylation reprogramming processes in the mammalian zygote.