Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfgang A. Schulz is active.

Publication


Featured researches published by Wolfgang A. Schulz.


The Prostate | 1999

High frequency of alterations in DNA methylation in adenocarcinoma of the prostate

Simon Santourlidis; Andrea R. Florl; Rolf Ackermann; Hans-Christian Wirtz; Wolfgang A. Schulz

Alterations of DNA methylation have been reported in many human cancers. In prostatic carcinoma, hypermethylation of the GST P gene promoter and an overall decrease in methylcytosine content have been reported. The aim of the present study was to investigate the frequency and extent of these alterations in relation to tumor stage and grade, in order to explore their clinical relevance and to determine their relationship to each other.


Genes, Chromosomes and Cancer | 2002

Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma.

Wolfgang A. Schulz; Jussi P. Elo; Andrea R. Florl; Sari Pennanen; Simon Santourlidis; Rainer Engers; Martin Buchardt; Hans-Helge Seifert; Tapio Visakorpi

To elucidate the relationship between genomewide DNA hypomethylation and chromosome instability, 55 prostate carcinoma specimens were analyzed for extent of hypomethylation by Southern blot analysis of LINE‐1 sequence methylation and for loss or gain of chromosomal material by comparative genomic hybridization. Seventeen (31%) tumors showed strong hypomethylation of DNA, whereas four (7%) displayed slight hypomethylation and the rest of the tumors normal‐level methylation. Chromosomal aberrations were observed in 34 carcinomas. The most frequent chromosomal alterations were loss of 13q in 18 cases and aberrations in 8p (loss) or 8q (gain) in 16 cases. The presence of chromosomal loss or gain was significantly associated with the presence of strong hypomethylation. A striking correlation (P = 0.00001) was observed between aberrations on chromosome 8 and hypomethylation, whereas no association was seen between DNA hypomethylation and loss of 13q. The association between DNA hypomethylation and the presence of metastases was statistically significant (P = 0.044), and both chromosomal alterations and DNA hypomethylation tended to be more frequent in higher‐stage tumors. In conclusion, the data indicate that hypomethylation is associated with chromosomal instability in prostate cancer. Specifically, a surprisingly strong association between alterations on chromosome 8 and genomewide hypomethylation was found. This association suggests that DNA hypomethylation and alterations in chromosome 8 may be mechanistically linked to each other in prostate carcinoma.


International Journal of Cancer | 2006

Understanding urothelial carcinoma through cancer pathways

Wolfgang A. Schulz

Urothelial carcinoma (UC), the common histological subtype of bladder cancer, presents as a papillary tumor or as an invasive, often lethal form. To study UC molecular biology, candidate gene and genome‐wide approaches have been followed. Here, it is argued that a ‘cancer pathway’ perspective is useful to integrate findings from both approaches. According to this view, papillary cancers typically exhibit activation of the MAPK pathway, as a consequence of oncogenic mutations in FGFR3 or HRAS, with increased Cyclin D1 expression. In contrast, invasive UC are characterized by severe disturbances in proximate cell cycle regulators, e.g. RB1 and CDKN2A/p16INK4A, which decrease dependency on mitogenic signaling. In addition, these disturbances permit, promote and are in turn exacerbated by chromosomal instability, which is further enhanced by loss of TP53 function. In another vicious cycle, defective cell cycle regulation interacts with DNA methylation alterations. The transition toward invasive UC may require concomitant and interacting defects in cell cycle regulation and the control of genomic stability. Intriguingly, neither canonical WNT/β‐Catenin nor hedgehog signaling appear to play major roles in UC. This may reflect its origin from more differentiated urothelial cells possessing a high regenerative potential rather than a stem cell population.


Archives of Toxicology | 2000

Glutathione transferase isozyme genotypes in patients with prostate and bladder carcinoma.

Christine Steinhoff; Knut H. Franke; Klaus Golka; Ricarda Thier; Hermann C. Römer; Claudia Rötzel; Rolf Ackermann; Wolfgang A. Schulz

Abstract. Genotype distributions for GSTP1, GSTM1, and GSTT1 were determined in 91 patients with prostatic carcinoma and 135 patients with bladder carcinoma and compared with those in 127 abdominal surgery patients without malignancies. None of the genotypes differed significantly with respect to age or sex among controls or cancer patients. In the group of prostatic carcinoma patients, GSTT1 null allele homozygotes were more prevalent (25% in carcinoma patients vs 13% in controls, Fisher P=0.02, χ2P=0.02, OR=2.31, CI=1.17–4.59) and the combined M1-/T1-null genotype was also more frequent (9% vs 3%, χ2P=0.02, Fisher P=0.03). Homozygosity for the GSTM1 null allele was more frequent among bladder carcinoma patients (59% in bladder carcinoma patients vs 45% in controls, Fisher P=0.03, χ2P=0.02, OR=1.76, CI=1.08–2.88). In contrast to a previous report, no significant increase in the frequency of the GSTP1b allele was found in the tumor patients. Except for the combined GSTM1-/T1-null genotype in prostatic carcinoma, none of the combined genotypes showed a significant association with either of the cancers. These findings suggest that specific single polymorphic GST genes, that is GSTM1 in the case of bladder cancer and GSTT1 in the case of prostatic carcinoma, are most relevant for the development of these urological malignancies among the general population in Central Europe.


Journal of Cellular and Molecular Medicine | 2006

Epigenetics of prostate cancer: beyond DNA methylation

Wolfgang A. Schulz; J. Hatina

Epigenetic mechanisms permit the stable inheritance of cellular properties without changes in DNA sequence or amount. In prostate carcinoma, epigenetic mechanisms are essential for development and progression, complementing, amplifying and diversifying genetic alterations. DNA hypermethylation affects at least 30 individual genes, while repetitive sequences including retrotransposons and selected genes become hypomethylated. Hypermethylation of several genes occurs in a coordinate manner early in carcinogenesis and can be exploited for cancer detection, whereas hypomethylation and further hypermethylation events are associated with progression. DNA methylation alterations interact with changes in chromatin proteins. Prominent alterations at this level include altered patterns of histone modification, increased expression of the EZH2 polycomb histone methyltransferase, and changes in transcriptional corepressors and coactivators. These changes may make prostate carcinoma particularly susceptible to drugs targeting chromatin and DNA modifications. They relate to crucial alterations in a network of transcription factors comprising ETS family proteins, the androgen receptor, NKX3.1, KLF, and HOXB13 homeobox proteins. This network controls differentiation and proliferation of prostate epithelial cells integrating signals from hormones, growth factors and cell adhesion proteins that are likewise distorted in prostate cancer. As a consequence, prostate carcinoma cells appear to be locked into an aberrant state, characterized by continued proliferation of largely differentiated cells. Accordingly, stem cell characteristics of prostate cancer cells appear to be secondarily acquired. The aberrant differentiation state of prostate carcinoma cells also results in distorted mutual interactions between epithelial and stromal cells in the tumor that promote tumor growth, invasion, and metastasis.


European Urology | 2003

Fibroblast growth factors and their receptors in urological cancers: Basic research and clinical implications

Marcus V Cronauer; Wolfgang A. Schulz; Hans-Helge Seifert; Rolf Ackermann; Martin Burchardt

Because therapeutical options for advanced urological cancers are limited, the understanding of key elements responsible for invasion and metastasis is very important. It has been hypothesized that progression to malignant growth is associated with a dysregulation of growth factors and/or their receptors. In the last few years, signaling pathways of the fibroblast growth factor (FGF) family have been subject to intense investigation. Fibroblast growth factors constitute one of the largest families of growth and differentiation factors for cells of mesodermal and neuroectodermal origin. The family comprises two prototypic members, acidic FGF (aFGF) and the basic FGF (bFGF), as well as 21 additionally related polypeptide growth factors that have been identified to date. FGFs are involved in many biological processes during embryonic development, wound healing, hematopoesis, and angiogenesis. In prostate, bladder, and renal cancers, FGFs regulate the induction of metalloproteinases (MMP) that degrade extracellular matrix proteins, thus facilitating tumor metastasis. Probably due to their potent angiogenic properties, aFGF and bFGF have received the most attention. However, there is increasing evidence that other FGFs also play crucial roles in tumors of the prostate, bladder, kidney, and testis. This review will discuss the different elements involved in FGF signaling and summarize the present knowledge of their biological and clinical relevance in urological cancers.


BioMed Research International | 2006

L1 Retrotransposons in Human Cancers

Wolfgang A. Schulz

Retrotransposons like L1 are silenced in somatic cells by a variety of mechanisms acting at different levels. Protective mechanisms include DNA methylation and packaging into inactive chromatin to suppress transcription and prevent recombination, potentially supported by cytidine deaminase editing of RNA. Furthermore, DNA strand breaks arising during attempted retrotranspositions ought to activate cellular checkpoints, and L1 activation outside immunoprivileged sites may elicit immune responses. A number of observations indicate that L1 sequences nevertheless become reactivated in human cancer. Prominently, methylation of L1 sequences is diminished in many cancer types and full-length L1 RNAs become detectable, although strong expression is restricted to germ cell cancers. L1 elements have been found to be enriched at sites of illegitimate recombination in many cancers. In theory, lack of L1 repression in cancer might cause transcriptional deregulation, insertional mutations, DNA breaks, and an increased frequency of recombinations, contributing to genome disorganization, expression changes, and chromosomal instability. There is however little evidence that such effects occur at a gross scale in human cancers. Rather, as a rule, L1 repression is only partly alleviated. Unfortunately, many techniques commonly used to investigate genetic and epigenetic alterations in cancer cells are not well suited to detect subtle effects elicited by partial reactivation of retroelements like L1 which are present as abundant, but heterogeneous copies. Therefore, effects of L1 sequences exerted on the local chromatin structure, on the transcriptional regulation of individual genes, and on chromosome fragility need to be more closely investigated in normal and cancer cells.


Seminars in Cancer Biology | 2009

Epigenetic mechanisms in the biology of prostate cancer.

Wolfgang A. Schulz; Michèle J. Hoffmann

Prostate cancer is one of the most frequent cancers in males in Western industrialized countries. Its course is highly variable, from indolent to highly lethal. Genetic changes vary accordingly, with chromosomal losses, gains and translocations, although often recurrent, differing between individual cases of the disease. In contrast, certain epigenetic changes are highly consistent, in particular hypermethylation of a specific set of genes, and others regularly associated with progression, such as global DNA hypomethylation, certain chromatin modifications and altered levels and composition of polycomb complexes. Although changes in polycombs and DNA methylation appear to both accompany the progression of prostate cancer, recent studies do not suggest that they cause one another. However, they may contribute to establishing and maintaining an aberrant differentiation potential of prostate cancer initiating cells. Global DNA hypomethylation in prostate cancer may relate to adaptative changes in several signaling pathways typical of this cancer type, including innate immunity responses. Similarly, adaptative changes in the expression and function of chromatin regulators required to diminish the dependency of prostate cancer cells on androgens may shape the epigenome, beyond individual genes regulated by the androgen receptor. Because of their crucial role, epigenetic alterations may become highly useful for diagnostics and therapy of prostate cancer.


Cancer Biology & Therapy | 2007

Expression changes in EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B are associated with DNA methylation changes in prostate cancer

Michèle J. Hoffmann; Rainer Engers; Andrea R. Florl; Arie P. Otte; Mirko Müller; Wolfgang A. Schulz

The polycomb proteins BMI-1, EZH2, and SIRT1 are characteristic components of the PRC1, PRC2, and PRC4 repressor complexes, respectively, that modify chromatin. Moreover, EZH2 may influence DNA methylation by direct interaction with DNA methyltransferases. EZH2 expression increases during prostate cancer progression, whereas BMI-1 and SIRT1 are not well investigated. Like EZH2 expression, DNA methylation alterations escalate in higher stage prostate cancers, raising the question whether these epigenetic changes are related. Expression of EZH2, BMI-1, SIRT1, and the DNA methyltransferases DNMT1 and DNMT3B measured by qRT-PCR in 47 primary prostate cancers was compared to APC, ASC, GSTP1, RARB2, and RASSF1A hypermethylation and LINE-1 hypomethylation. SIRT1 and DNMT3B were overexpressed in cancerous over benign tissues, whereas BMI-1 was rather downregulated and DNMT1 significantly diminished. Nevertheless, cancers with higher DNMT1 and BMI-1 expression had worse clinical characteristics, as did those with elevated EZH2. In particular, above median DNMT1 expression predicted a worse prognosis. EZH2 and SIRT1 overexpression were well correlated with increased MKI67. Immunohistochemistry confirmed limited EZH2 and heterogeneous DNMT3B overexpression and explained the decrease in BMI-1 by pronounced heterogeneity among tumor cells. EZH2 overexpression, specifically among all factors investigated, was associated with more frequent hypermethylation, in particular of GSTP1 and RARB2, and also with LINE-1 hypomethylation. Our data reveal complex changes in the composition of polycomb repressor complexes in prostate cancer. Heterogeneously expressed BMI-1 and slightly increased EZH2 may characterize less malignant cancers, whereas more aggressive cases express both at higher levels. SIRT1 appears to be generally increased in prostate cancers. Intriguingly, our data suggest a direct influence of increased EZH2 on altered DNA methylation patterns in prostate cancer.


Journal of Clinical Oncology | 2013

DNA Methylation Signatures for Prediction of Biochemical Recurrence After Radical Prostatectomy of Clinically Localized Prostate Cancer

Christa Haldrup; Kamilla Mundbjerg; Else Marie Vestergaard; Philippe Lamy; Peter Wild; Wolfgang A. Schulz; Christian Arsov; Tapio Visakorpi; Michael Borre; Søren Høyer; Torben F. Ørntoft; Karina Dalsgaard Sørensen

PURPOSE Diagnostic and prognostic tools for prostate cancer (PC) are suboptimal, causing overtreatment of indolent PC and risk of delayed treatment of aggressive PC. Here, we identify six novel candidate DNA methylation markers for PC with promising diagnostic and prognostic potential. METHODS Microarray-based screening and bisulfite sequencing of 20 nonmalignant and 29 PC tissue specimens were used to identify new candidate DNA hypermethylation markers for PC. Diagnostic and prognostic potential was evaluated in 35 nonmalignant prostate tissue samples, 293 radical prostatectomy (RP) samples (cohort 1, training), and 114 malignant RP samples (cohort 2, validation) collected in Denmark, Switzerland, Germany, and Finland. Sensitivity and specificity for PC were evaluated by receiver operating characteristic analyses. Correlations between DNA methylation levels and biochemical recurrence were assessed using log-rank tests and univariate and multivariate Cox regression analyses. RESULTS Hypermethylation of AOX1, C1orf114, GAS6, HAPLN3, KLF8, and MOB3B was highly cancer specific (area under the curve, 0.89 to 0.98). Furthermore, high C1orf114 methylation was significantly (P < .05) associated with biochemical recurrence in multivariate analysis in cohort 1 (hazard ratio [HR], 3.10; 95% CI, 1.89 to 5.09) and was successfully validated in cohort 2 (HR, 3.27; 95% CI, 1.17 to 9.12). Moreover, a significant (P < .05) three-gene prognostic methylation signature (AOX1/C1orf114/HAPLN3), classifying patients into low- and high-methylation subgroups, was trained in cohort 1 (HR, 1.91; 95% CI, 1.26 to 2.90) and validated in cohort 2 (HR, 2.33; 95% CI, 1.31 to 4.13). CONCLUSION We identified six novel candidate DNA methylation markers for PC. C1orf114 hypermethylation and a three-gene methylation signature were independent predictors of time to biochemical recurrence after RP in two PC patient cohorts.

Collaboration


Dive into the Wolfgang A. Schulz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea R. Florl

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Rolf Ackermann

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Albers

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helmut Sies

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Mirko Müller

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Rainer Engers

University of Düsseldorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge