Wolfgang Dubiel
Humboldt State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wolfgang Dubiel.
The EMBO Journal | 2001
Dawadschargal Bech-Otschir; Regine Kraft; Xiaohua Huang; Peter Henklein; Barbara Kapelari; Christian Pollmann; Wolfgang Dubiel
In higher eukaryotic cells, the p53 protein is degraded by the ubiquitin–26S proteasome system mediated by Mdm2 or the human papilloma virus E6 protein. Here we show that COP9 signalosome (CSN)‐specific phosphorylation targets human p53 to ubiquitin–26S proteasome‐dependent degradation. As visualized by electron microscopy, p53 binds with high affinity to the native CSN complex. p53 interacts via its N‐terminus with CSN subunit 5/Jab1 as shown by far‐western and pull‐down assays. The CSN‐specific phosphorylation sites were mapped to the core domain of p53 including Thr155. A phosphorylated peptide, Δp53(145–164), specifically inhibits CSN‐mediated phosphorylation and p53 degradation. Curcumin, a CSN kinase inhibitor, blocks E6‐dependent p53 degradation in reticulocyte lysates. Mutation of Thr155 to valine is sufficient to stabilize p53 against E6‐dependent degradation in reticulocyte lysates and to reduce binding to Mdm2. The p53T155V mutant accumulates in both HeLa and HL 60 cells and exhibits a mutant (PAb 240+) conformation. It induces the cyclin‐dependent inhibitor p21. In HeLa and MCF‐7 cells, inhibition of CSN kinase by curcumin or Δp53(145–164) results in accumulation of endogenous p53.
Trends in Biochemical Sciences | 2000
Katherine Ferrell; Caroline R. M. Wilkinson; Wolfgang Dubiel; Colin Gordon
The 26S proteasome is the major non-lysosomal protease in eukaryotic cells. This multimeric enzyme is the integral component of the ubiquitin-mediated substrate degradation pathway. It consists of two subcomplexes, the 20S proteasome, which forms the proteolytic core, and the 19S regulator (or PA700), which confers ATP dependency and ubiquitinated substrate specificity on the enzyme. Recent biochemical and genetic studies have revealed many of the interactions between the 17 regulatory subunits, yielding an approximation of the 19S complex topology. Inspection of interactions of regulatory subunits with non-subunit proteins reveals patterns that suggest these interactions play a role in 26S proteasome regulation and localization.
The EMBO Journal | 2003
Stefan Uhle; Ohad Medalia; Richard T. Waldron; Renate Dumdey; Peter Henklein; Dawadschargal Bech-Otschir; Xiaohua Huang; Matthias Berse; Joseph Sperling; Rüdiger Schade; Wolfgang Dubiel
The COP9 signalosome (CSN) purified from human erythrocytes possesses kinase activity that phosphoryl ates proteins such as c‐Jun and p53 with consequence for their ubiquitin (Ub)‐dependent degradation. Here we show that protein kinase CK2 (CK2) and protein kinase D (PKD) co‐purify with CSN. Immunoprecipi tation and far‐western blots reveal that CK2 and PKD are in fact associated with CSN. As indicated by electron microscopy with gold‐labeled ATP, at least 10% of CSN particles are associated with kinases. Kinase activity, most likely due to CK2 and PKD, co‐immuno precipitates with CSN from HeLa cells. CK2 binds to ΔCSN3(111–403) and CSN7, whereas PKD interacts with full‐length CSN3. CK2 phosphorylates CSN2 and CSN7, and PKD modifies CSN7. Both CK2 and PKD phosphorylate c‐Jun as well as p53. CK2 phosphoryl ates Thr155, which targets p53 to degradation by the Ub system. Curcumin, emodin, DRB and resveratrol block CSN‐associated kinases and induce degradation of c‐Jun in HeLa cells. Curcumin treatment results in elevated amounts of c‐Jun–Ub conjugates. We conclude that CK2 and PKD are recruited by CSN in order to regulate Ub conjugate formation.
Journal of Biological Chemistry | 1997
Michael Seeger; Katherine Ferrell; Rainer Frank; Wolfgang Dubiel
The proteasomal system consists of a proteolytic core, the 20 S proteasome, which associates in an ATP-dependent reaction with the 19 S regulatory complex to form the functional 26 S proteasome. In the absence of ATP, the 20 S proteasome forms a complex with the γ-interferon-inducible 11 S regulator. Both the 20 S proteasome and the 11 S regulator have been implied in the generation of antigenic peptides. The human immunodeficiency virus (HIV)-1 Tat protein causes a number of different effects during acquired immunodeficiency syndrome (AIDS). Here we show that HIV-1 Tat protein strongly inhibits the peptidase activity of the 20 S proteasome and that it interferes with formation of the 20 S proteasome-11 S regulator complex. In addition, it slightly increases the activity of purified 26 S proteasome. These results may explain the mechanism by which HIV-1-infected cells escape cytotoxic T lymphocyte response and at least in part immunodeficiency in AIDS patients.
BMC Genetics | 2002
Susan Wee; Bettina Hetfeld; Wolfgang Dubiel; Dieter A. Wolf
Background The COP9/signalosome (CSN), a multiprotein complex consisting of eight subunits, is implicated in a wide variety of regulatory processes including cell cycle control, signal transduction, transcriptional activation, and plant photomorphogenesis. Some of these functions have been linked to CSN-associated enzymes, including kinases and an activity that removes the ubiquitin-like protein NEDD8/Rub1p from the cullin subunit of E3 ligases. CSN is highly conserved across species from fission yeast to humans, but sequence comparison has failed to identify the complex in budding yeast, except for a putative CSN5 subunit called Rri1p. Results We show that disruption of four budding yeast genes, PCI8 and three previously uncharacterized ORFs, which encode proteins interacting with Rrr1p/Csn5p, each results in the accumulation of the cullin Cdc53p exclusively in the Rub1p-modified state. This phenotype, which resembles that of fission yeast csn mutants, is due to a biochemical defect in deneddylation that is complemented by wild-type cell lysate and by purified human CSN in vitro. Although three of the four genes encode proteins with PCI domains conserved in metazoan CSN proteins, their disruption does not confer the DNA damage sensitivity described in some fission yeast csn mutants. Conclusions Our studies present unexpected evidence for the conservation of a functional homologue of the metazoan CSN, which mediates control of cullin neddylation in budding yeast.
Journal of Molecular Biology | 2002
Xiaohua Huang; Ulrike Seifert; Ulrike Salzmann; Peter Henklein; Robert Preissner; Wolfgang Henke; Alice J. Sijts; Peter-Michael Kloetzel; Wolfgang Dubiel
The human immunodeficiency virus-1 Tat protein inhibits the peptidase activity of the 20S proteasome and competes with the 11S regulator/PA28 for binding to the 20S proteasome. Structural comparison revealed a common site in the Tat protein and the 11S regulator alpha-subunit (REGalpha) called the REG/Tat-proteasome-binding (RTP) site. Kinetic assays found amino acid residues Lys51, Arg52 and Asp67 forming the RTP site of Tat to be responsible for the effects on proteasomes in vitro. The RTP site identified in REGalpha consists of the residues Glu235, Lys236 and Lys239. Mutation of the REGalpha amino acid residues Glu235 and Lys236 to Ala resulted in an REGalpha mutant that lost the ability to activate the 20S proteasome even though it still forms complexes with REGbeta and binds to the 20S proteasome. The REGalpha RTP site is needed to enhance the presentation of a cytomegalovirus pp89 protein-derived epitope by MHC class I molecules in mouse fibroblasts. Cell experiments demonstrate that the Tat amino acid residues 37-72 are necessary for the interaction of the viral protein with proteasomes in vivo. Full-length Tat and the Tat peptide 37-72 suppressed 11S regulator-mediated presentation of the pp89 epitope. In contrast, the Tat peptide 37-72 with mutations of amino acid residues Lys51, Arg52 and Asp67 to Ala was not able to reduce antigen presentation.
Journal of Biological Chemistry | 2000
Helit Cohen; Aviva Azriel; Tali Cohen; David Meraro; Sharon Hashmueli; Dawadschargal Bech-Otschir; Regine Kraft; Wolfgang Dubiel; Ben-Zion Levi
Interferon consensus sequence-binding protein (ICSBP) is a member of the interferon regulatory factors (IRF) that has a pivotal role in mediating resistance to pathogenic infections in mice and in promoting the differentiation of myeloid cells. ICSBP exerts some of its transcriptional activities via association with other factors that enable its binding to a variety of promoters containing DNA composite elements. These interactions are mediated through a specific COOH-terminal domain termed IAD (IRF association domain). To gain a broader insight of the capacity of ICSBP to interact with other factors, yeast two-hybrid screens were performed using ICSBP-IAD as a bait against a B-cell cDNA library. Trip15 was identified as a specific interacting factor with ICSBP in yeast cells, which was also confirmed by in vitro glutathioneS-transferase pull-down assays and by coimmunoprecipitation studies in COS7 cells. Trip15 was recently identified as a component of the COP9/signalosome (CSN) complex composed of eight evolutionary conserved subunits and thus termed CSN2. This complex has a role in cell-signaling processes, which is manifested by its associated novel kinase activity and by the involvement of its subunits in regulating multiple cell-signaling pathways and cell-cycle progression. We show that in vitroassociation of ICSBP with the CSN leads to phosphorylation of ICSBP at a unique serine residue within its IAD. The phosphorylated residue is essential for efficient association with IRF-1 and thus for the repressor activity of ICSBP exerted on IRF-1. This suggests that the CSN has a role in integrating incoming signals that affect the transcriptional activity of ICSBP.
FEBS Letters | 1995
Wolfgang Dubiel; Katherine Ferrell; Renate Dumdey; Sybille Standera; Siegfried Prehn; Martin Rechsteiner
A cDNA encoding subunit 12 (S12) of human erythrocyte 26 S protease has been isolated, sequenced and expressed. The cDNA contains an open reading frame that encodes a 36.6 kDA protein 96% identical to mouse Mov‐34 and 67% identical to its Drosophila melanogaster homolog. Based on the high degree of sequence identity between human S12, mouse and Drosophila Mov‐34 proteins, we conclude that the Mov‐34 gene product is a component of the 26 S protease. Antibodies produced against two S12 fragments, Met1‐Tyr95 (S12f95) and Met1‐Leu205 (S12f205), react with S12 transferred to nitrocellulose from SDS‐PAGE. In contrast, after transfer from native gels, the epitope(s) recognized by anti‐S12f205 is exposed in the regulatory complex but appears to be masked when the regulatory complex associates with the multicatalytic protease.
Mini-reviews in Medicinal Chemistry | 2008
Chris Braumann; Judith Tangermann; Christoph A. Jacobi; J. M. Müller; Wolfgang Dubiel
Preclinical studies revealed that curcumin, the yellow curry pigment, emodin, a compound derived from grapes, and taurolidine, derived from a biogenic amino acid, and some of their structural homologs possess anti-angiogenic and cancer chemopreventive properties. Whereas curcumin and emodin can act via inhibition of COP9 signalosome-associated kinases, taurolidine blocks protein biosynthesis.
European Journal of Haematology | 2006
Mahmoud Ismail; Peter Henklein; Xiaohua Huang; Chris Braumann; R.I. Rückert; Wolfgang Dubiel
Abstract:u2002 Therapeutic angiogenesis represents a novel approach to treat critical limb ischemia when revascularization is no more an option. The clinical use of the vascular endothelial growth factor is questioned, because of its side effects. This study was designed to identify and characterize human immunodeficiency virus type 1 (HIV‐1) Tat‐derived peptides based on their pro‐angiogenic properties. A series of Tat‐derived peptides were synthesized containing mutations in the basic domain. To minimize side effects Tat peptides were selected exerting no effects on the proteasome and on the viability of human umbilical vein endothelial cells (HUVEC). Tatpep5, 15, and 16 increased the endogenous levels of the pro‐angiogenic transcription factors c‐Jun and SP‐1 as well as the production of the plasminogen activator inhibitor‐1 (PAI‐1) by HUVEC. A significant induction of endothelial cell invasion was observed upon treatment of HUVEC with Tat peptides. In addition, selected Tat peptides induced tube formation by HUVEC as visualized and quantified in a Matrigel matrix. Our data demonstrate that the selected Tat peptides fulfill essential criteria for pro‐angiogenic substances. They represent the basis for the development of novel pro‐angiogenic drugs for future therapeutic angiogenesis, which might be applied for treatment of unreconstructible critical limb ischemia.