Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfgang F. Richter is active.

Publication


Featured researches published by Wolfgang F. Richter.


Antimicrobial Agents and Chemotherapy | 1996

4-aminoquinoline analogs of chloroquine with shortened side chains retain activity against chloroquine-resistant Plasmodium falciparum.

Robert G. Ridley; Werner Hofheinz; Hugues Matile; Catherine Jaquet; Arnulf Dorn; Raffaello Masciadri; Synese Jolidon; Wolfgang F. Richter; Alberto Guenzi; Maria-Angela Girometta; Heinrich Urwyler; Werner Huber; Sodsri Thaithong; Wallace Peters

We have synthesized several 4-aminoquinolines with shortened side chains that retain activity against chloroquine-resistant isolates of Plasmodium falciparum malaria (W. Hofheinz, C. Jaquet, and S. Jolidon, European patent 94116281.0, June 1995). We report here an assessment of the activities of four selected compounds containing ethyl, propyl, and isopropyl side chains. Reasonable in vitro activity (50% inhibitory concentration, < 100 nM) against chloroquine-resistant P. falciparum strains was consistently observed, and the compounds performed well in a variety of plasmodium berghei animal models. However, some potential drawbacks of these compounds became evident upon in-depth testing. In vitro analysis of more than 70 isolates of P. falciparum and studies with a mouse in vivo model suggested a degree of cross-resistance with chloroquine. In addition, pharmacokinetic analysis demonstrated the formation of N-dealkylated metabolites of these compounds. These metabolites are similarly active against chloroquine-susceptible strains but are much less active against chloroquine-resistant strains. Thus, the clinical dosing required for these compounds would probably be greater for chloroquine-resistant strains than for chloroquine-susceptible strains. The clinical potential of these compounds is discussed within the context of chloroquines low therapeutic ratio and toxicity.


Journal of Alzheimer's Disease | 2012

Gantenerumab: A Novel Human Anti-Aβ Antibody Demonstrates Sustained Cerebral Amyloid-β Binding and Elicits Cell-Mediated Removal of Human Amyloid-β

Bernd Bohrmann; Karlheinz Baumann; Jörg Benz; Francoise Gerber; Walter Huber; Frédéric Knoflach; Jürg Messer; Krisztina Oroszlan; Robert Rauchenberger; Wolfgang F. Richter; Christine Rothe; Margit Urban; Michael Bardroff; Michael Winter; Christer Nordstedt; Hansruedi Loetscher

The amyloid-β lowering capacity of anti-Aβ antibodies has been demonstrated in transgenic models of Alzheimers disease (AD) and in AD patients. While the mechanism of immunotherapeutic amyloid-β removal is controversial, antibody-mediated sequestration of peripheral Aβ versus microglial phagocytic activity and disassembly of cerebral amyloid (or a combination thereof) has been proposed. For successful Aβ immunotherapy, we hypothesized that high affinity antibody binding to amyloid-β plaques and recruitment of brain effector cells is required for most efficient amyloid clearance. Here we report the generation of a novel fully human anti-Aβ antibody, gantenerumab, optimized in vitro for binding with sub-nanomolar affinity to a conformational epitope expressed on amyloid-β fibrils using HuCAL(®) phage display technologies. In peptide maps, both N-terminal and central portions of Aβ were recognized by gantenerumab. Remarkably, a novel orientation of N-terminal Aβ bound to the complementarity determining regions was identified by x-ray analysis of a gantenerumab Fab-Aβ(1-11) complex. In functional assays gantenerumab induced cellular phagocytosis of human amyloid-β deposits in AD brain slices when co-cultured with primary human macrophages and neutralized oligomeric Aβ42-mediated inhibitory effects on long-term potentiation in rat brain. In APP751(swedish)xPS2(N141I) transgenic mice, gantenerumab showed sustained binding to cerebral amyloid-β and, upon chronic treatment, significantly reduced small amyloid-β plaques by recruiting microglia and prevented new plaque formation. Unlike other Aβ antibodies, gantenerumab did not alter plasma Aβ suggesting undisturbed systemic clearance of soluble Aβ. These studies demonstrated that gantenerumab preferentially interacts with aggregated Aβ in the brain and lowers amyloid-β by eliciting effector cell-mediated clearance.


Aaps Journal | 2012

Mechanistic Determinants of Biotherapeutics Absorption Following SC Administration

Wolfgang F. Richter; Suraj G. Bhansali; Marilyn E. Morris

The subcutaneous (SC) route is of growing interest for the administration of biotherapeutics. Key products on the biotherapeutic market such as insulins, but also several immunoglobulins or Fc-fusion proteins, are administered SC. Despite the importance of the SC route, the available knowledge about the processes involved in the SC absorption of biotherapeutics is limited. This review summarizes available information on the physiology of the SC tissue and on the pharmacokinetic processes after SC administration including “first pass catabolism” at the administration site as well as transport in the extracellular matrix of the SC tissue, followed by absorption into the blood circulation or the lymphatic system. Both monoclonal antibodies and other biotherapeutics are discussed. Determinants of absorption after SC administration are summarized including compound properties such as charge or molecular weight. Scale-up of animal data to humans is discussed, including the current shortcomings of empirical scaling approaches and the lack of suitable mechanistic approaches.


mAbs | 2012

Minipig as a potential translatable model for monoclonal antibody pharmacokinetics after intravenous and subcutaneous administration

Yanan Zheng; Devin Tesar; Lisa Benincosa; Herbert Birnböck; C. Andrew Boswell; Daniela Bumbaca; Kyra J. Cowan; Dimitry M. Danilenko; Ann L. Daugherty; Paul J. Fielder; Hans Peter Grimm; Amita Joshi; Nicole Justies; Gerry Kolaitis; Nicholas Lewin-Koh; Jing Li; Sami McVay; Jennifer O'Mahony; Michael B. Otteneder; Michael Pantze; Wendy S. Putnam; Zhihua J. Qiu; Jane Ruppel; Thomas Singer; Oliver Boris Stauch; Frank-Peter Theil; Jennifer Visich; Jihong Yang; Yong Ying; Leslie A. Khawli

Subcutaneous (SC) delivery is a common route of administration for therapeutic monoclonal antibodies (mAbs) with pharmacokinetic (PK)/pharmacodynamic (PD) properties requiring long-term or frequent drug administration. An ideal in vivo preclinical model for predicting human PK following SC administration may be one in which the skin and overall physiological characteristics are similar to that of humans. In this study, the PK properties of a series of therapeutic mAbs following intravenous (IV) and SC administration in Göttingen minipigs were compared with data obtained previously from humans. The present studies demonstrated: (1) minipig is predictive of human linear clearance; (2) the SC bioavailabilities in minipigs are weakly correlated with those in human; (3) minipig mAb SC absorption rates are generally higher than those in human and (4) the SC bioavailability appears to correlate with systemic clearance in minipigs. Given the important role of the neonatal Fc-receptor (FcRn) in the PK of mAbs, the in vitro binding affinities of these IgGs against porcine, human and cynomolgus monkey FcRn were tested. The result showed comparable FcRn binding affinities across species. Further, mAbs with higher isoelectric point tended to have faster systemic clearance and lower SC bioavailability in both minipig and human. Taken together, these data lend increased support for the use of the minipig as an alternative predictive model for human IV and SC PK of mAbs.


Clinical Cancer Research | 2009

Polymeric Tubulysin-Peptide Nanoparticles with Potent Antitumor Activity

Thomas Schluep; Paula Gunawan; Ling Ma; Gregory S. Jensen; Julienne Duringer; Steven Hinton; Wolfgang F. Richter; Jungyeong Hwang

Purpose: Tubulysins are naturally occurring tetrapeptides with potent antiproliferative activity against multiple cancer cell lines. However, they are also highly toxic in animal models. In order to improve the therapeutic index of this class of compounds, a nanoparticle prodrug of tubulysin A (TubA) was synthesized and evaluated in vitro and in vivo. Experimental Design: A thiol derivative of TubA was covalently attached to a linear, β-cyclodextrin based polymer through a disulfide linker (CDP-TubA). The polymer conjugate assembled into stable nanoparticles. Inhibition of tubulin polymerization and antiproliferative activity of the polymer conjugate were evaluated in vitro. The preclinical efficacy of CDP-TubA administered i.v. was evaluated in nude mice bearing s.c. implanted human HT29 colorectal and H460 non–small cell lung carcinoma tumors. Results: The IC50 of CDP-TubA (in Tub A equivalents) was 24, 5, and 10 nmol/L versus 3, 1, and 2 nmol/L for Tub A in NCI-H1299 (lung), HT-29 (colon), and A2780 (ovarian) cell lines, respectively. Tub A and the active thiol derivative were potent inhibitors of tubulin polymerization, whereas CDP-TubA showed minimal inhibition, indicating that target inhibition requires release of the peptide drug from the nanoparticles. The maximum tolerated dose of CDP-TubA was 6 mg/kg (in TubA equivalents) versus 0.05 mg/kg for TubA in nude mice. In vivo, a single treatment cycle of three weekly doses of CDP-TubA showed a potent antitumor effect and significantly prolonged survival compared with TubA alone. Conclusions: Cyclodextrin polymerized nanoparticles are an enabling technology for the safe and effective delivery of tubulysins for the treatment of cancer.


Drug Metabolism and Disposition | 2014

Subcutaneous absorption of biotherapeutics: knowns and unknowns.

Wolfgang F. Richter; Bjoern Jacobsen

Subcutaneous administration of biotherapeutics offers several potential advantages compared with intravenous administration. Many biotherapeutics, both marketed or in development, are administered via the subcutaneous route. This minireview provides an overview of the presystemic absorption processes following subcutaneous administration, the resulting pharmacokinetics after subcutaneous administration, and provides recent case examples of the development of subcutaneous administered drugs with a focus on monoclonal antibodies. Subcutaneous absorption of biotherapeutics is relatively slow and mostly incomplete. Knowledge of the subcutaneous tissue is important to understand the absorption kinetics after subcutaneous administration. Transport in the subcutis to the absorbing blood or lymph capillaries appears to be a major contributor to the slow subcutaneous absorption. Larger proteins (>20 kDa) are mostly absorbed via the lymphatic system, although potential species differences are not fully understood yet. Also, the presystemic catabolism leading to incomplete bioavailability is little understood, both the involved enzymes and its translation across species. For IgGs, binding to the neonatal Fc receptor is important to obtain a high bioavailability. Overall, several aspects of subcutaneous absorption are still poorly understood, which hampers, e.g., translation across species. Further research in this area is warranted.


PLOS ONE | 2013

Subcutaneous versus Intravenous Administration of Rituximab: Pharmacokinetics, CD20 Target Coverage and B-Cell Depletion in Cynomolgus Monkeys

Cheng-Ping Mao; Martin Brovarney; Karim Dabbagh; Herbert Birnböck; Wolfgang F. Richter; Christopher Del Nagro

The CD20-specific monoclonal antibody rituximab (MabThera®, Rituxan®) is widely used as the backbone of treatment for patients with hematologic disorders. Intravenous administration of rituximab is associated with infusion times of 4–6 hours, and can be associated with infusion-related reactions. Subcutaneous administration of rituximab may reduce this and facilitate administration without infusion-related reactions. We sought to determine the feasibility of achieving equivalent efficacy (measured by endogenous B-cell depletion) and long-term durability of CD20 target coverage for subcutaneously administered rituximab compared with intravenous dosing. In these preclinical studies, male cynomolgus monkeys were treated with either intravenous rituximab or novel subcutaneous formulation of rituximab containing human recombinant DNA-derived hyaluronidase enzyme. Peripheral blood samples were analyzed for serum rituximab concentrations, peripheral B-cell depletion, and CD20 target coverage, including subset analysis according to CD21+ status. Distal lymph node B-cell depletion and CD20 target coverage were also measured. Initial peak serum concentrations of rituximab were significantly higher following intravenous administration than subcutaneous. However, the mean serum rituximab trough concentrations were comparable at 2 and 7 days post-first dose and 9 and 14 days post-second dose. Efficacy of B-cell depletion in both peripheral blood and distal lymph nodes was comparable for both methods. In lymph nodes, 9 days after the second dose with subcutaneous and intravenous rituximab, B-cell levels were decreased by 57% and 42% respectively. Similarly, levels of peripheral blood B cells were depleted by >94% for both subcutaneous and intravenous dosing at all time points. Long-term recovery of free unbound surface CD20 levels was similar, and the duration of B-cell depletion was equally sustained over 2 months for both methods. These results demonstrate that, despite initial peak serum drug level differences, subcutaneous rituximab has similar durability, pharmacodynamics, and efficacy compared with intravenous rituximab.


Xenobiotica | 1996

Distribution of remikiren, a potent orally active inhibitor of human renin, in laboratory animals

Wolfgang F. Richter; B. R. Whitby; R.C. Chou

1. Whole-body autoradiography was used to compare the distribution of remikiren in the squirrel monkey, in which the compound is a potent inhibitor of renin, with the rat and the guinea-pig in which it is less active. 2. Following intravenous administration, drug-related material was rapidly and extensively taken up by the tissues of all three species. Consistent with rapid biliary elimination, high levels of radioactivity were found in the bile duct/gall bladder/intestinal contents. Of the remaining organs, the kidney consistently showed the highest concentrations of drug-related material. 3. Radio-hplc analysis of the kidney samples demonstrated that the majority of the retained material was present as intact remikiren, even at 24 h after administration. A similar degree of retention by the kidney was also found after oral dosing. 4. Uptake of remikiren by the kidney may act as a reservoir for the drug, resulting in the prolonged duration of pharmacological activity, which, despite the high plasma clearance of the drug, has previously been observed in primates.


Regulatory Toxicology and Pharmacology | 2014

New challenges and opportunities in nonclinical safety testing of biologics.

Andreas Baumann; Kelly Flagella; Roy Forster; Lolke de Haan; Sven Kronenberg; Mathias Locher; Wolfgang F. Richter; Frank-Peter Theil; Marque D. Todd

New challenges and opportunities in nonclinical safety testing of biologics were discussed at the 3rd European BioSafe Annual General Membership meeting in November 2013 in Berlin: (i)Approaches to refine use of non-human primates in non-clinical safety testing of biologics and current experience on the use of minipigs as alternative non-rodent species.(ii)Tissue distribution studies as a useful tool to support pharmacokinetic/pharmacodynamic (PKPD) assessment of biologics, in that they provide valuable mechanistic insights at drug levels at the site of action.(iii)Mechanisms of nonspecific toxicity of antibody drug conjugates (ADC) and ways to increase the safety margins.(iv)Although biologics toxicity typically manifests as exaggerated pharmacology there are some reported case studies on unexpected toxicity.(v)Specifics of non-clinical development approaches of noncanonical monoclonal antibodies (mAbs), like bispecifics and nanobodies.


Drug Research | 2014

Non-Clinical Pharmacokinetic/Pharmacodynamic and Early Clinical Studies Supporting Development of a Novel Subcutaneous Formulation for the Monoclonal Antibody Rituximab

Beate Bittner; Wolfgang F. Richter; F. Hourcade-Potelleret; F. Herting; J. Schmidt

This overview article describes the non-clinical pharmacology, pharmacokinetic and clinical dose-finding programs supporting the development of a novel subcutaneous formulation for rituximab, a monoclonal antibody that selectively targets CD20-positive B-lymphocytes. The subcutaneous route of administration is expected to improve convenience for patients and to reduce healthcare professional resource use compared with conventional intravenous infusion. Various non-clinical and clinical studies were conducted to support the bridge from the approved intravenous formulation to the novel subcutaneous treatment. The underlying hypothesis for these studies was that achieving subcutaneous rituximab serum trough concentrations that are at least as high as those reached with the intravenous formulation would result in at least the same degree of receptor saturation. Preclinical mouse xenograft and cynomolgus monkey B-cell depletion studies were performed at intravenous and subcutaneous doses that were previously found to result in comparable serum concentrations in pharmacokinetic studies in the same species. Results from these non-clinical assessments guided dose selection for the subsequent phase 1b dose finding trials in patients with follicular lymphoma as part of maintenance treatment. A fixed dose of 1 400 mg was found to result in noninferior serum trough concentrations to the intravenous formulation. Clinical trials in the induction setting in patients with follicular lymphoma and chronic lymphocytic leukemia are currently ongoing.

Collaboration


Dive into the Wolfgang F. Richter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge