Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfgang G. Kreyling is active.

Publication


Featured researches published by Wolfgang G. Kreyling.


Inhalation Toxicology | 2004

Translocation of Inhaled Ultrafine Particles to the Brain

Günter Oberdörster; Zachary D. Sharp; Viorel Atudorei; Alison Elder; Robert Gelein; Wolfgang G. Kreyling; Christopher Cox

Ultrafine particles (UFP, particles <100 nm) are ubiquitous in ambient urban and indoor air from multiple sources and may contribute to adverse respiratory and cardiovascular effects of particulate matter (PM). Depending on their particle size, inhaled UFP are efficiently deposited in nasal, tracheobronchial, and alveolar regions due to diffusion. Our previous rat studies have shown that UFP can translocate to interstitial sites in the respiratory tract as well as to extrapulmonary organs such as liver within 4 to 24 h postexposure. There were also indications that the olfactory bulb of the brain was targeted. Our objective in this follow-up study, therefore, was to determine whether translocation of inhaled ultrafine solid particles to regions of the brain takes place, hypothesizing that UFP depositing on the olfactory mucosa of the nasal region will translocate along the olfactory nerve into the olfactory bulb. This should result in significant increases in that region on the days following the exposure as opposed to other areas of the central nervous system (CNS). We generated ultrafine elemental 13C particles (CMD = 36 nm; GSD = 1.66) from [13C] graphite rods by electric spark discharge in an argon atmosphere at a concentration of 160 μg/m3. Rats were exposed for 6 h, and lungs, cerebrum, cerebellum and olfactory bulbs were removed 1, 3, 5, and 7 days after exposure. 13C concentrations were determined by isotope ratio mass spectroscopy and compared to background 13C levels of sham-exposed controls (day 0). The background corrected pulmonary 13C added as ultrafine 13C particles on day 1 postexposure was 1.34 μg/lung. Lung 13C concentration decreased from 1.39 μg/g (day 1) to 0.59 μg/g by 7 days postexposure. There was a significant and persistent increase in added 13C in the olfactory bulb of 0.35 μg/g on day 1, which increased to 0.43 μg/g by day 7. Day 1 13C concentrations of cerebrum and cerebellum were also significantly increased but the increase was inconsistent, significant only on one additional day of the postexposure period, possibly reflecting translocation across the blood–brain barrier in certain brain regions. The increases in olfactory bulbs are consistent with earlier studies in nonhuman primates and rodents that demonstrated that intranasally instilled solid UFP translocate along axons of the olfactory nerve into the CNS. We conclude from our study that the CNS can be targeted by airborne solid ultrafine particles and that the most likely mechanism is from deposits on the olfactory mucosa of the nasopharyngeal region of the respiratory tract and subsequent translocation via the olfactory nerve. Depending on particle size, >50% of inhaled UFP can be depositing in the nasopharyngeal region during nasal breathing. Preliminary estimates from the present results show that ∼20% of the UFP deposited on the olfactory mucosa of the rat can be translocated to the olfactory bulb. Such neuronal translocation constitutes an additional not generally recognized clearance pathway for inhaled solid UFP, whose significance for humans, however, still needs to be established. It could provide a portal of entry into the CNS for solid UFP, circumventing the tight blood–brain barrier. Whether this translocation of inhaled UFP can cause CNS effects needs to be determined in future studies.


Particle and Fibre Toxicology | 2005

Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy

Günter Oberdörster; Andrew D. Maynard; Ken Donaldson; Vincent Castranova; Julie W. Fitzpatrick; Kevin D. Ausman; Janet M. Carter; Barbara Karn; Wolfgang G. Kreyling; David Y. Lai; Stephen S. Olin; Nancy A. Monteiro-Riviere; David B. Warheit; Hong Yang

AbstractThe rapid proliferation of many different engineered nanomaterials (defined as materials designed and produced to have structural features with at least one dimension of 100 nanometers or less) presents a dilemma to regulators regarding hazard identification. The International Life Sciences Institute Research Foundation/Risk Science Institute convened an expert working group to develop a screening strategy for the hazard identification of engineered nanomaterials. The working group report presents the elements of a screening strategy rather than a detailed testing protocol. Based on an evaluation of the limited data currently available, the report presents a broad data gathering strategy applicable to this early stage in the development of a risk assessment process for nanomaterials. Oral, dermal, inhalation, and injection routes of exposure are included recognizing that, depending on use patterns, exposure to nanomaterials may occur by any of these routes. The three key elements of the toxicity screening strategy are: Physicochemical Characteristics, In Vitro Assays (cellular and non-cellular), and In Vivo Assays.There is a strong likelihood that biological activity of nanoparticles will depend on physicochemical parameters not routinely considered in toxicity screening studies. Physicochemical properties that may be important in understanding the toxic effects of test materials include particle size and size distribution, agglomeration state, shape, crystal structure, chemical composition, surface area, surface chemistry, surface charge, and porosity. In vitro techniques allow specific biological and mechanistic pathways to be isolated and tested under controlled conditions, in ways that are not feasible in in vivo tests. Tests are suggested for portal-of-entry toxicity for lungs, skin, and the mucosal membranes, and target organ toxicity for endothelium, blood, spleen, liver, nervous system, heart, and kidney. Non-cellular assessment of nanoparticle durability, protein interactions, complement activation, and pro-oxidant activity is also considered.Tier 1 in vivo assays are proposed for pulmonary, oral, skin and injection exposures, and Tier 2 evaluations for pulmonary exposures are also proposed. Tier 1 evaluations include markers of inflammation, oxidant stress, and cell proliferation in portal-of-entry and selected remote organs and tissues. Tier 2 evaluations for pulmonary exposures could include deposition, translocation, and toxicokinetics and biopersistence studies; effects of multiple exposures; potential effects on the reproductive system, placenta, and fetus; alternative animal models; and mechanistic studies.


Environmental Health Perspectives | 2005

Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells

Marianne Geiser; Barbara Rothen-Rutishauser; Nadine Kapp; Samuel Schürch; Wolfgang G. Kreyling; Holger Schulz; Manuela Semmler; Vinzenz Im Hof; J. Heyder; Peter Gehr

High concentrations of airborne particles have been associated with increased pulmonary and cardiovascular mortality, with indications of a specific toxicologic role for ultrafine particles (UFPs; particles < 0.1 μm). Within hours after the respiratory system is exposed to UFPs, the UFPs may appear in many compartments of the body, including the liver, heart, and nervous system. To date, the mechanisms by which UFPs penetrate boundary membranes and the distribution of UFPs within tissue compartments of their primary and secondary target organs are largely unknown. We combined different experimental approaches to study the distribution of UFPs in lungs and their uptake by cells. In the in vivo experiments, rats inhaled an ultrafine titanium dioxide aerosol of 22 nm count median diameter. The intrapulmonary distribution of particles was analyzed 1 hr or 24 hr after the end of exposure, using energy-filtering transmission electron microscopy for elemental microanalysis of individual particles. In an in vitro study, we exposed pulmonary macrophages and red blood cells to fluorescent polystyrene microspheres (1, 0.2, and 0.078 μm) and assessed particle uptake by confocal laser scanning microscopy. Inhaled ultrafine titanium dioxide particles were found on the luminal side of airways and alveoli, in all major lung tissue compartments and cells, and within capillaries. Particle uptake in vitro into cells did not occur by any of the expected endocytic processes, but rather by diffusion or adhesive interactions. Particles within cells are not membrane bound and hence have direct access to intracellular proteins, organelles, and DNA, which may greatly enhance their toxic potential.


Journal of Toxicology and Environmental Health | 2002

EXTRAPULMONARY TRANSLOCATION OF ULTRAFINE CARBON PARTICLES FOLLOWING WHOLE-BODY INHALATION EXPOSURE OF RATS

Günter Oberdörster; Zachary D. Sharp; Viorel Atudorei; Alison Elder; Robert Gelein; Alex Lunts; Wolfgang G. Kreyling; Christopher Cox

Studies with intravenously injected ultrafine particles have shown that the liver is the major organ of their uptake from the blood circulation. Measuring translocation of inhaled ultrafine particles to extrapulmonary organs via the blood compartment is hampered by methodological difficulties (i.e., label may come off, partial solubilization) and analytical limitations (measurement of very small amounts). The objective of our pilot study was to determine whether ultrafine elemental carbon particles translocate to the liver and other extrapulmonary organs following inhalation as singlet particles by rats. We generated ultrafine 13 C particles as an aerosol with count median diameters (CMDs) of 20-29 nm (GSD 1.7) using electric spark discharge of 13 C graphite electrodes in argon. Nine Fischer 344 rats were exposed to these particles for 6 h. in whole-body inhalation chambers at concentrations of 180 and 80 w g/m 3 ; 3 animals each were killed at 0.5, 18, and 24 h postexposure. Six unexposed rats served as controls. Lung lobes, liver, heart, brain, olfactory bulb, and kidney were excised, homogenized, and freeze-dried for analysis of the added 13 C by isotope ratio mass spectrometry. Organic 13 C was not detected in the 13 C particles. The 13 C retained in the lung at 0.5 h postexposure was about 70% less than predicted by rat deposition models for ultrafine particles, and did not change significantly during the 24-h postexposure period. Normalized to exposure concentration, the added 13 C per gram of lung on average in the postexposure period was ~9 ng/g organ/ w g/m 3 . Significant amounts of 13 C had accumulated in the liver by 0.5 h postinhalation only at the high exposure concentration, whereas by 18 and 24 h postexposure the 13 C amount of the livers of all exposed rats was about fivefold greater than the 13 C burden retained in the lung. No significant increase in 13 C was detected in the other organs which were examined. These results demonstrate effective translocation of ultrafine elemental carbon particles to the liver by 1 d after inhalation exposure. Translocation pathways include direct input into the blood compartment from ultrafine carbon particles deposited throughout the respiratory tract. However, since predictive particle deposition models indicate that respiratory tract deposits alone may not fully account for the hepatic 13 C burden, input from ultrafine particles present in the GI tract needs to be considered as well. Such translocation to blood and extrapulmonary tissues may well be different between ultrafine carbon and other insoluble (metal) ultrafine particles.


Particle and Fibre Toxicology | 2006

The potential risks of nanomaterials: a review carried out for ECETOC

Paul J. A. Borm; David Robbins; Stephan Haubold; Thomas A. J. Kuhlbusch; H. Fissan; Ken Donaldson; Roel P. F. Schins; Vicki Stone; Wolfgang G. Kreyling; Jürgen Lademann; Jean Krutmann; David B. Warheit; Eva Oberdörster

During the last few years, research on toxicologically relevant properties of engineered nanoparticles has increased tremendously. A number of international research projects and additional activities are ongoing in the EU and the US, nourishing the expectation that more relevant technical and toxicological data will be published. Their widespread use allows for potential exposure to engineered nanoparticles during the whole lifecycle of a variety of products. When looking at possible exposure routes for manufactured Nanoparticles, inhalation, dermal and oral exposure are the most obvious, depending on the type of product in which Nanoparticles are used. This review shows that (1) Nanoparticles can deposit in the respiratory tract after inhalation. For a number of nanoparticles, oxidative stress-related inflammatory reactions have been observed. Tumour-related effects have only been observed in rats, and might be related to overload conditions. There are also a few reports that indicate uptake of nanoparticles in the brain via the olfactory epithelium. Nanoparticle translocation into the systemic circulation may occur after inhalation but conflicting evidence is present on the extent of translocation. These findings urge the need for additional studies to further elucidate these findings and to characterize the physiological impact. (2) There is currently little evidence from skin penetration studies that dermal applications of metal oxide nanoparticles used in sunscreens lead to systemic exposure. However, the question has been raised whether the usual testing with healthy, intact skin will be sufficient. (3) Uptake of nanoparticles in the gastrointestinal tract after oral uptake is a known phenomenon, of which use is intentionally made in the design of food and pharmacological components. Finally, this review indicates that only few specific nanoparticles have been investigated in a limited number of test systems and extrapolation of this data to other materials is not possible. Air pollution studies have generated indirect evidence for the role of combustion derived nanoparticles (CDNP) in driving adverse health effects in susceptible groups. Experimental studies with some bulk nanoparticles (carbon black, titanium dioxide, iron oxides) that have been used for decades suggest various adverse effects. However, engineered nanomaterials with new chemical and physical properties are being produced constantly and the toxicity of these is unknown. Therefore, despite the existing database on nanoparticles, no blanket statements about human toxicity can be given at this time. In addition, limited ecotoxicological data for nanomaterials precludes a systematic assessment of the impact of Nanoparticles on ecosystems.


Journal of Toxicology and Environmental Health | 2002

TRANSLOCATION OF ULTRAFINE INSOLUBLE IRIDIUM PARTICLES FROM LUNG EPITHELIUM TO EXTRAPULMONARY ORGANS IS SIZE DEPENDENT BUT VERY LOW

Wolfgang G. Kreyling; M. Semmler; F. Erbe; P. Mayer; S. Takenaka; H. Schulz; Günter Oberdörster; A. Ziesenis

Recently it was speculated that ultrafine particles may translocate from deposition sites in the lungs to systemic circulation. This could lead to accumulation and potentially adverse reactions in critical organs such as liver, heart, and even brain, consistent with the hypothesis that ultrafine insoluble particles may play a role in the onset of cardiovascular diseases, as growing evidence from epidemiological studies suggests. Ultrafine 192 Ir radio-labeled iridium particles (15 and 80 nm count median diameter) generated by spark discharging were inhaled by young adult, healthy, male WKY rats ventilated for 1 h via an endotracheal tube. After exposure, excreta were collected quantitatively. At time points ranging from 6 h to 7 d, rats were sacrificed, and a complete balance of 192 Ir activity retained in the body and cleared by excretion was determined gamma spectroscopically. Thoracic deposition fractions of inhaled 15- and 80-nm 192 Ir particles were 0.49 and 0.28, respectively. Both batches of ultrafine iridium particles proved to be insoluble (<1% in 7 d). During wk 1 after inhalation particles were predominantly cleared via airways into the gastrointestinal tract and feces. This cleared fraction includes particles deposited in the alveolar region. Additionally, minute particle translocation of <1% of the deposited particles into secondary organs such as liver, spleen, heart, and brain was measured after systemic uptake from the lungs. The translocated fraction of the 80-nm particles was about an order of magnitude less than that of 15-nm particles. In additional studies, the biokinetics of ultrafine particles and soluble 192 Ir was studied after administration by either gavage or intratracheal instillation or intravenous injection. They confirmed the low solubility of the particles and proved that (1) particles were neither dissolved nor absorbed from the gut, (2) systemically circulating particles were rapidly and quantitatively accumulated in the liver and spleen and retained there, and (3) soluble 192 Ir instilled in the lungs was rapidly excreted via urine with little retention in the lungs and other organs. This study indicates that only a rather small fraction of ultrafine iridium particles has access from peripheral lungs to systemic circulation and extrapulmonary organs. Therefore, the hypothesis that systemic access of ultrafine insoluble particles may generally induce adverse reactions in the cardiovascular system and liver leading to the onset of cardiovascular diseases needs additional detailed and differentiated consideration.


Particle and Fibre Toxicology | 2010

Deposition and biokinetics of inhaled nanoparticles

Marianne Geiser; Wolfgang G. Kreyling

Particle biokinetics is important in hazard identification and characterization of inhaled particles. Such studies intend to convert external to internal exposure or biologically effective dose, and may help to set limits in that way. Here we focus on the biokinetics of inhaled nanometer sized particles in comparison to micrometer sized ones.The presented approach ranges from inhaled particle deposition probability and retention in the respiratory tract to biokinetics and clearance of particles out of the respiratory tract. Particle transport into the blood circulation (translocation), towards secondary target organs and tissues (accumulation), and out of the body (clearance) is considered. The macroscopically assessed amount of particles in the respiratory tract and secondary target organs provides dose estimates for toxicological studies on the level of the whole organism. Complementary, microscopic analyses at the individual particle level provide detailed information about which cells and subcellular components are the target of inhaled particles. These studies contribute to shed light on mechanisms and modes of action eventually leading to adverse health effects by inhaled nanoparticles.We review current methods for macroscopic and microscopic analyses of particle deposition, retention and clearance. Existing macroscopic knowledge on particle biokinetics and microscopic views on particle organ interactions are discussed comparing nanometer and micrometer sized particles. We emphasize the importance for quantitative analyses and the use of particle doses derived from real world exposures.


Circulation | 2002

Particulate Air Pollution and Risk of ST-Segment Depression During Repeated Submaximal Exercise Tests Among Subjects With Coronary Heart Disease The Exposure and Risk Assessment for Fine and Ultrafine Particles in Ambient Air (ULTRA) Study

Juha Pekkanen; Annette Peters; Gerard Hoek; Pekka Tiittanen; Bert Brunekreef; Jeroen J. de Hartog; Joachim Heinrich; Angela Ibald-Mulli; Wolfgang G. Kreyling; Timo Lanki; Kirsi L. Timonen; Esko Vanninen

Background—Daily variations in ambient particulate air pollution have been associated with cardiovascular mortality and morbidity. We therefore assessed the associations between levels of the 3 main modes of urban aerosol distribution and the occurrence of ST-segment depressions during repeated exercise tests. Methods and Results—Repeated biweekly submaximal exercise tests were performed during 6 months among adult subjects with stable coronary heart disease in Helsinki, Finland. Seventy-two exercise-induced ST-segment depressions >0.1 mV occurred during 342 exercise tests among 45 subjects. Simultaneously, particle mass <2.5 &mgr;m (PM2.5) and the number concentrations of ultrafine particles (particle diameter 10 to 100 nm [NC0.01–0.1]) and accumulation mode particles (100 to 1000 nm [NC0.1–1]) were monitored at a central site. Levels of particulate air pollution 2 days before the clinic visit were significantly associated with increased risk of ST-segment depression during exercise test. The association was most consistent for measures of particles reflecting accumulation mode particles (odds ratio 3.29; 95% CI, 1.57 to 6.92 for NC0.1–1 and 2.84; 95% CI, 1.42 to 5.66 for PM2.5), but ultrafine particles also had an effect (odds ratio 3.14; 95% CI, 1.56 to 6.32), which was independent of PM2.5. Also, gaseous pollutants NO2 and CO were associated with an increased risk for ST-segment depressions. No consistent association was observed for coarse particles. The associations tended to be stronger among subjects who did not use &bgr;-blockers. Conclusions—The present results suggest that the effect of particulate air pollution on cardiovascular morbidity is at least partly mediated through increased susceptibility to myocardial ischemia.


Biomaterials | 2010

Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection.

Jens Lipka; Manuela Semmler-Behnke; Ralph A. Sperling; Alexander Wenk; Shinji Takenaka; Carsten Schleh; Thomas Kissel; Wolfgang J. Parak; Wolfgang G. Kreyling

Besides toxicity tests, biokinetic studies are a fundamental part of investigations to evaluate a safe and sustainable use of nanoparticles. Today, gold nanoparticles (Au NPs) are known to be a versatile tool in different areas such as science, engineering or medicine. In this study, we investigated the biokinetics after intravenous and intratracheal applications of poly(ethylene glycol) (PEG) modified Au NPs compared to plain Au NPs. Radioactive-labeled Au NPs of 5 nm inorganic core diameter were applied to rats and the NP content in tissues, organs and excretion were quantified after 1-hour and 24-hours. After intravenous injection, a prolonged blood circulation time was determined for Au NPs with 10 kDa PEG chains. Non-PEGylated Au NPs and 750 Da PEG Au NPs accumulated mostly in liver and spleen. After intratracheal application the majority of all three types of applied NPs stayed in the lungs: the total translocation towards the circulation did not differ considerably after PEGylation of the Au NPs. However, a prolonged retention time in the circulation was detected for the small fraction of translocated 10 kDa PEG Au NPs, too.


International Journal of Hygiene and Environmental Health | 2004

Health effects of particles in ambient air

Andreas D. Kappos; Peter Bruckmann; Thomas Eikmann; Norbert Englert; Uwe Heinrich; Peter Höppe; Eckehard Koch; Georg H.M. Krause; Wolfgang G. Kreyling; Knut Rauchfuss; Peter Rombout; Verena Schulz-Klemp; Wolf R. Thiel; H.-Erich Wichmann

UNLABELLED A summary of a critical review by a working group of the German commission on Air Pollution Prevention of VDI and DIN of the actual data on exposure and health effects (excluding cancer) of fine particulate air pollution is presented. EXPOSURE Typical ambient particle concentrations for PM10 (PM2.5) in Germany are in the range of 10-45 (10-30) microg/m3 as annual mean and 50-200 (40-150) microg/m3 as maximum daily mean. The ratio of PM2.5/PM10 generally amounts between 0.7 and 0.9. HEALTH EFFECTS During the past 10 years many new epidemiological and toxicological studies on health effects of particulate matter (PM) have been published. In summary, long-term exposure against PM for years or decades is associated with elevated total, cardiovascular, and infant mortality. With respect to morbidity, respiratory symptoms, lung growth, and function of the immune system are affected. Short-term studies show consistant associations of exposure to daily concentrations of PM with mortality and morbidity on the same day or the subsequent days. Patients with asthma, COPD, pneumonia, and other respiratory diseases as well as patients with cardio-vascular diseases and diabetes are especially affected. The strongest associations are found for PM2.5 followed by PM10, with no indication of a threshold value for the health effects. The data base for ultra fine particles is too small for final conclusions. The available toxicological data support the epidemiological findings and give hints as to the mechanisms of the effects. CONCLUSION The working group concludes that a further reduction of the limit values proposed for 2005 will substantially reduce health risks due to particulate air pollution. Because of the strong correlation of PM10 with PM2.5 at most German sites there is no specific need for limit values of PM2.5 for Germany in addition to those of PM10.

Collaboration


Dive into the Wolfgang G. Kreyling's collaboration.

Top Co-Authors

Avatar

Shinji Takenaka

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juha Pekkanen

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

J. Heyder

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Holger Schulz

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Josef Cyrys

University of Augsburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Holger Schulz

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge