Wolfgang Haack
Technical University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wolfgang Haack.
Journal of Applied Mathematics and Physics | 1958
Gerhard Bruhn; Wolfgang Haack
SummaryThis paper deals with a general three-dimensional characteristic method for the inviscid flow of ideal gases using some simple facts from the differential geometry of vector fields. The fundamentals of a general numerical method are deduced from the system of the characteristic equations. They are applied to a special case of two-dimensional flow.
Archive | 1969
Wolfgang Haack; Wolfgang L. Wendland
Zur Einfuhrung von Integralen uber Pfaffsche Formen werden zunachst Integrale uber Differentialformen im R 2 betrachtet.
Archive | 1969
Wolfgang Haack; Wolfgang L. Wendland
Wir wollen hier die allgemeine Losung w des Problems
Archive | 1969
Wolfgang Haack; Wolfgang L. Wendland
Archive | 1969
Wolfgang Haack; Wolfgang L. Wendland
\begin{gathered}\quad \quad \frac{{\partial w}}{{\partial z}} = \bar Aw + B\bar w, \hfill \\\operatorname{Re} (\bar \gamma w)\left| {_{\dot G} = \varphi (s)} \right. \hfill \\\end{gathered}
Archive | 1969
Wolfgang Haack; Wolfgang L. Wendland
Archive | 1969
Wolfgang Haack; Wolfgang L. Wendland
(11.1.1) mit der Randschar \(\bar \gamma = \alpha (s) - i\beta (s),\;\left| {\bar \gamma } \right| \ne 0\), negativer Charakteristik
Archive | 1969
Wolfgang Haack; Wolfgang L. Wendland
Archive | 1969
Wolfgang Haack; Wolfgang L. Wendland
- n = \frac{1}{{2\pi }}\int\limits_{s = 0}^L {\frac{d}{{ds}}(arc\;tg\frac{\alpha }{\beta })ds} < 0
Archive | 1969
Wolfgang Haack; Wolfgang L. Wendland