Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfgang Holnthoner is active.

Publication


Featured researches published by Wolfgang Holnthoner.


Journal of Immunology | 2002

Dimethylfumarate Inhibits TNF-Induced Nuclear Entry of NF-κB/p65 in Human Endothelial Cells

Robert Loewe; Wolfgang Holnthoner; Marion Gröger; Manuela Pillinger; Florian Gruber; Diana Mechtcheriakova; Erhard Hofer; Klaus Wolff; Peter Petzelbauer

Fumaric acid esters, mainly dimethylfumarate (DMF), have been successfully used to treat psoriasis. Based on previous observations that DMF inhibited expression of several TNF-induced genes in endothelial cells, we wished to explore the molecular basis of DMF function in greater detail. In first experiments we analyzed DMF effects on tissue factor expression in human endothelial cells in culture, because tissue factor is expressed by two independent sets of transcription factors, by NF-κB via TNF and by early gene response-1 transcription factor via vascular endothelial growth factor (VEGF). We show that DMF inhibits TNF-induced tissue factor mRNA and protein expression as well as TNF-induced DNA binding of NF-κB proteins, but not VEGF-induced tissue factor protein, mRNA expression, or VEGF-induced early gene response-1 transcription factor/DNA binding. To determine where DMF interferes with the TNF/NF-κB signaling cascade, we next analyzed DMF effects on IκB and on the subcellular distribution of NF-κB. DMF does not inhibit TNF-induced IκBα phosphorylation and IκB degradation; thus, NF-κB is properly released from IκB complexes even in the presence of DMF. Importantly, DMF inhibits the TNF-induced nuclear entry of NF-κB proteins, and this effect appears selective for NF-κB after the release from IκB, because the constitutive shuttling of inactive NF-κB/IκB complexes into and out from the nucleus is not blocked by DMF. Moreover, DMF does not block NF-κB/DNA binding. In conclusion, DMF appears to selectively prevent the nuclear entry of activated NF-κB, and this may be the basis of its beneficial effect in psoriasis.


Cancer Cell | 2010

Effective Suppression of Vascular Network Formation by Combination of Antibodies Blocking VEGFR Ligand Binding and Receptor Dimerization

Denis Tvorogov; Andrey Anisimov; Wei Zheng; Veli-Matti Leppänen; Tuomas Tammela; Simonas Laurinavičius; Wolfgang Holnthoner; Hanna Heloterä; Tanja Holopainen; Michael Jeltsch; Nisse Kalkkinen; Hilkka Lankinen; Päivi M. Ojala; Kari Alitalo

Antibodies that block vascular endothelial growth factor (VEGF) have become an integral part of antiangiogenic tumor therapy, and antibodies targeting other VEGFs and receptors (VEGFRs) are in clinical trials. Typically receptor-blocking antibodies are targeted to the VEGFR ligand-binding site. Here we describe a monoclonal antibody that inhibits VEGFR-3 homodimer and VEGFR-3/VEGFR-2 heterodimer formation, signal transduction, as well as ligand-induced migration and sprouting of microvascular endothelial cells. Importantly, we show that combined use of antibodies blocking ligand binding and receptor dimerization improves VEGFR inhibition and results in stronger inhibition of endothelial sprouting and vascular network formation in vivo. These results suggest that receptor dimerization inhibitors could be used to enhance antiangiogenic activity of antibodies blocking ligand binding in tumor therapy.


Journal of Immunology | 2004

IL-3 Induces Expression of Lymphatic Markers Prox-1 and Podoplanin in Human Endothelial Cells

Marion Gröger; Robert Loewe; Wolfgang Holnthoner; Robert Embacher; Manuela Pillinger; G.Scott Herron; Klaus Wolff; Peter Petzelbauer

Factors determining lymphatic differentiation in the adult organism are not yet well characterized. We have made the observation that mixed primary cultures of dermal blood endothelial cells (BEC) and lymphatic endothelial cells (LEC) grown under standard conditions change expression of markers during subculture: After passage 6, they uniformly express LEC-specific markers Prox-1 and podoplanin. Using sorted cells, we show that LEC but not BEC constitutively express IL-3, which regulates Prox-1 and podoplanin expression in LEC. The addition of IL-3 to the medium of BEC cultures induces Prox-1 and podoplanin. Blocking IL-3 activity in LEC cultures results in a loss of Prox-1 and podoplanin expression. In conclusion, endogenous IL-3 is required to maintain the LEC phenotype in culture, and the addition of IL-3 to BEC appears to induce transdifferentiation of BEC into LEC.


Langmuir | 2014

Laser Photofabrication of Cell-Containing Hydrogel Constructs

Aleksandr Ovsianikov; Severin Mühleder; Jan Torgersen; Zhiquan Li; Xiaohua Qin; Sandra Van Vlierberghe; Peter Dubruel; Wolfgang Holnthoner; Heinz Redl; Robert Liska; Jürgen Stampfl

The two-photon polymerization (2PP) of photosensitive gelatin in the presence of living cells is reported. The 2PP technique is based on the localized cross-linking of photopolymers induced by femtosecond laser pulses. The availability of water-soluble photoinitiators (PI) suitable for 2PP is crucial for applying this method to cell-containing materials. Novel PIs developed by our group allow 2PP of formulations with up to 80% cell culture medium. The cytocompatibility of these PIs was evaluated by an MTT assay. The results of cell encapsulation by 2PP show the occurrence of cell damage within the laser-exposed regions. However, some cells located in the immediate vicinity and even within the 2PP-produced structures remain viable and can further proliferate. The control experiments demonstrate that the laser radiation itself does not damage the cells at the parameters used for 2PP. On the basis of these findings and the reports by other groups, we conclude that such localized cell damage is of a chemical origin and can be attributed to reactive species generated during 2PP. The viable cells trapped within the 2PP structures but not exposed to laser radiation continued to proliferate. The live/dead staining after 3 weeks revealed viable cells occupying most of the space available within the 3D hydrogel constructs. While some of the questions raised by this study remain open, the presented results indicate the general practicability of 2PP for 3D processing of cell-containing materials. The potential applications of this highly versatile approach span from precise engineering of 3D tissue models to the fabrication of cellular microarrays.


Cancer Cell | 2008

VEGFR-3 Expression Is Restricted to Blood and Lymphatic Vessels in Solid Tumors

Tatiana V. Petrova; Petri Bono; Wolfgang Holnthoner; Jessica Chesnes; Bronislaw Pytowski; Harri Sihto; Pirjo Laakkonen; Päivi Heikkilä; Heikki Joensuu; Kari Alitalo

Document S1. Supplemental Experimental Procedures, Three Supplemental Figures, and Two Supplemental TablesxDownload (1.77 MB ) Document S1. Supplemental Experimental Procedures, Three Supplemental Figures, and Two Supplemental Tables


Angiogenesis | 2014

Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells

Sabrina Rohringer; Pablo Hofbauer; Karl Schneider; Anna-Maria Husa; Georg Feichtinger; Anja Peterbauer-Scherb; Heinz Redl; Wolfgang Holnthoner

Vascularization of tissue-engineered constructs is essential to provide sufficient nutrient supply and hemostasis after implantation into target sites. Co-cultures of adipose-derived stem cells (ASC) with outgrowth endothelial cells (OEC) in fibrin gels were shown to provide an effective possibility to induce vasculogenesis in vitro. However, the mechanisms of the interaction between these two cell types remain unclear so far. The aim of this study was to evaluate differences of direct and indirect stimulation of ASC-induced vasculogenesis, the influence of ASC on network stabilization and molecular mechanisms involved in vascular structure formation. Endothelial cells (EC) were embedded in fibrin gels either containing non-coated or ASC-coated microcarrier beads as well as ASC alone. Moreover, EC-seeded constructs incubated with ASC-conditioned medium were used in addition to constructs with ASC seeded on top. Vascular network formation was visualized by green fluorescent protein expressing cells or immunostaining for CD31 and quantified. RT-qPCR of cells derived from co-cultures in fibrin was performed to evaluate changes in the expression of EC marker genes during the first week of culture. Moreover, angiogenesis-related protein levels were measured by performing angiogenesis proteome profiler arrays. The results demonstrate that proximity of endothelial cells and ASC is required for network formation and ASC stabilize EC networks by developing pericyte characteristics. We further showed that ASC induce controlled vessel growth by secreting pro-angiogenic and regulatory proteins. This study reveals angiogenic protein profiles involved in EC/ASC interactions in fibrin matrices and confirms the usability of OEC/ASC co-cultures for autologous vascular tissue engineering.


RSC Advances | 2013

Initiation efficiency and cytotoxicity of novel water-soluble two-photon photoinitiators for direct 3D microfabrication of hydrogels

Zhiquan Li; Jan Torgersen; Aliasghar Ajami; Severin Mühleder; Xiaohua Qin; Wolfgang Husinsky; Wolfgang Holnthoner; Aleksandr Ovsianikov; Jürgen Stampfl; Robert Liska

The lack of efficient water-soluble two-photon absorption (TPA) photoinitiators has been a critical obstruction for three dimensional hydrogel microfabrications with high water load by two-photon induced polymerization (TPIP). In this paper, a series of cyclic benzylidene ketone-based two-photon initiators, containing carboxylic acid sodium salts to improve water solubility, were synthesized via classical aldol condensation reactions. The cytotoxicity of cyclopentanone-based photoinitiators is as low as that of the well-known biocompatible photoinitiator Irgacure 2959 as assessed in the dark with MG63 cell line. In z-scan measurement, the TPA cross sections of the investigated initiators are only moderate in water, while the TPA values for hydrophobic analogues measured in chloroform were much higher. All novel initiators exhibited broad processing windows in TPIP tests using hydrophilic photopolymers with up to 50 wt% of water. Impressively, microfabrication of hydrogels with excellent precision was possible at a writing speed as high as 100 mm s−1.


Journal of Medical Genetics | 2009

Recessive primary congenital lymphoedema caused by a VEGFR3 mutation

Arash Ghalamkarpour; Wolfgang Holnthoner; Pipsa Saharinen; Laurence M. Boon; John B. Mulliken; Kari Alitalo; Miikka Vikkula

Background: Heterozygous mutations in VEGFR3 have been identified in some familial cases with dominantly inherited primary congenital lymphoedema, known as Nonne–Milroy disease. Recessive cases of primary lymphoedema with a genetic cause are not known, except for two families with syndromic hypotrichosis–lymphoedema–telangiectasia, with a SOX18 mutation. Methods and results: In this study, we present the first case of isolated primary congenital lymphoedema with recessive inheritance, caused by a homozygous mutation in VEGFR3. The novel mutation is a transition from alanine-to-threonine in amino acid 855, located in the ATP binding domain of the VEGFR3 receptor. Assessment of receptor function showed impaired ligand induced internalisation and ERK1/2 activity. Moreover, receptor phosphorylation was reduced, although less so than for a kinase-dead VEGFR3 mutation, which causes Nonne–Milroy disease. Conclusion: A hypomorphic VEGFR3 mutation, with moderate effect on receptor function, in a homozygous state can result in insufficient lymphatic functioning. Thus, in addition to Nonne–Milroy disease with dominant inheritance, VEGFR3 alterations can cause isolated recessive primary congenital lymphoedema. These data expand our understanding of the aetiology of congenital lymphoedema and suggest that large scale screening of VEGFR3 in all primary lymphoedema patients is necessary.


Journal of Immunology | 2000

Dermal Microvascular Endothelial Cells Express the 180-kDa Macrophage Mannose Receptor In Situ and In Vitro

Marion Gröger; Wolfgang Holnthoner; Dieter Maurer; Sonja Lechleitner; Klaus Wolff; Bettina Beate Mayr; Werner Lubitz; Peter Petzelbauer

Expression of the 180-kDa mannose receptor (MR) is mainly found on cells of the macrophage lineage. MR mediates the uptake of micro-organisms and host-derived glycoproteins. We demonstrate that endothelium of the human skin in situ and dermal microvascular endothelial cells (DMEC) in vitro expressed MR at both the protein and mRNA levels. In contrast, HUVEC were consistently negative for MR expression. DMEC internalized dextran as well as Escherichia coli by the way of MR into acidic phagosomes, only a few of which fused with CD63- and lysosomal-associated membrane glycoprotein-2-positive lysosomes. This contrasts with the situation in monocyte-derived dendritic cells, where almost all of the MR-Ag complexes reached CD63- and lysosomal-associated membrane glycoprotein-2-positive compartments, indicating differences in the phagolysosomal fusion rate between DMEC and dendritic cells. In conclusion, DMEC express functional MR, a finding that corroborates a role of skin endothelium in Ag capture/clearing.


Journal of Tissue Engineering and Regenerative Medicine | 2015

Adipose-derived stem cells induce vascular tube formation of outgrowth endothelial cells in a fibrin matrix.

Wolfgang Holnthoner; Karin Hohenegger; Anna-Maria Husa; Severin Muehleder; Alexandra Meinl; Anja Peterbauer-Scherb; Heinz Redl

Vascularization of engineered tissues is one of the current challenges in tissue engineering. Several strategies aim to generate a prevascularized scaffold which can be implanted at sites of injury or trauma. Endothelial cells derived from peripheral blood (outgrowth endothelial cells, OECs) display promising features for vascular tissue engineering, including their autologous nature, capacity for proliferation and ability to form mature vessels. In this study we investigated the ability of OECs to form vascular structures in co‐culture with adipose‐derived stem cells (ASCs) in a fibrin matrix. Using microcarrier beads coated with OECs, we showed ingrowth of endothelial cells in the fibrin scaffold. Furthermore, co‐cultures with ASCs induced vessel formation, as evidenced by immunostaining for CD31. The degradation of fibrin is at least in part mediated by expression of matrix metalloproteinase‐14. Moreover, we showed OEC/ASC‐induced vessel‐like structure formation even in the absence of microcarrier beads, where increasing amounts of ASCs resulted in a denser tubular network. Our data add new insights into co‐culture‐induced vessel formation of outgrowth endothelial cells within a fibrin matrix in an autologous system. Copyright

Collaboration


Dive into the Wolfgang Holnthoner's collaboration.

Top Co-Authors

Avatar

Heinz Redl

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Marion Gröger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Peter Petzelbauer

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Klaus Wolff

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Sabrina Rohringer

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aleksandr Ovsianikov

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anna-Maria Husa

University of Applied Sciences Technikum Wien

View shared research outputs
Top Co-Authors

Avatar

Mira Schaupper

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Robert Liska

Vienna University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge