Wolfgang Knogge
Leibniz Association
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wolfgang Knogge.
The Plant Cell | 1996
Wolfgang Knogge
Fungi constitute a highly versatile group of eukaryotic carbonheterotrophic organisms that have successfully occupied most natural habitats. The vast majority of fungi are strict saprophytes; <10% of the *lOO,OOO known fungal sp-ecies are able to colonize plants, and an even smaller fraction of these are to a plant pathogen? Second, what mechanisms control the degree of virulence on the host once pathogenicity has been established?
Journal of Plant Physiology | 2011
Ralf Horbach; Aura Rocio Navarro-Quesada; Wolfgang Knogge; Holger B. Deising
Fungi cause severe diseases on a broad range of crop and ornamental plants, leading to significant economical losses. Plant pathogenic fungi exhibit a huge variability in their mode of infection, differentiation and function of infection structures and nutritional strategy. In this review, advances in understanding mechanisms of biotrophy, necrotrophy and hemibiotrophic lifestyles are described. Special emphasis is given to the biotrophy-necrotrophy switch of hemibiotrophic pathogens, and to biosynthesis, chemical diversity and mode of action of various fungal toxins produced during the infection process.
Critical Reviews in Plant Sciences | 2002
K.A.E. van 't Slot; Wolfgang Knogge
Many proteins from plant pathogens affecting the interaction with the host plant have dual functions: they promote virulence on the host species and they function as avirulence determinants by eliciting defense reactions in host cultivars expressing the appropriate resistance genes. In viruses all proteins encoded by the small genomes can be expected to be essential for viral development in the host. However, in different plants surveillance systems have evolved that are able to recognize most of these proteins. Bacteria and fungi have specialized pathogenicity and virulence genes. Many of the latter were originally identified through the resistance gene-dependent elicitor activity of their products. Their role in virulence only became apparent when they were inactivated or transferred to different microbes or after their ectopic expression in host plants. Many microbes appear to maintain these genes despite their disadvantageous effect, introducing only few mutations to abolish the interaction of their products with the plant recognition system. This has been interpreted as been indicative of a virulence function of the gene products that is not impaired by the mutations. Alternatively, in particular in bacteria there is now evidence that pathogenicity was acquired through horizontal gene transfer. Genes supporting virulence in the donor organisms original host appear to have traveled along. Being gratuitous in the new situation, they may have been inactivated without loss of any beneficial function for the pathogen.
Molecular Plant-microbe Interactions | 2004
Stéphanie Schürch; Celeste C. Linde; Wolfgang Knogge; Lee F. Jackson; Bruce A. McDonald
Deletion or alteration of an avirulence gene are two mechanisms that allow pathogens to escape recognition mediated by the corresponding resistance gene in the host. We studied these two mechanisms for the NIP1 avirulence gene in field populations of the fungal barley pathogen Rhynchosporium secalis. The product of the avirulence gene, NIP1, causes leaf necrosis and elicits a defense response on plants with the Rrs1 resistance gene. A high NIP1 deletion frequency (45%) was found among 614 isolates from different geographic populations on four continents. NIP1 was also sequenced for 196 isolates, to identify DNA polymorphisms and corresponding NIP1 types. Positive diversifying selection was found to act on NIP1. A total of 14 NIP1 types were found, 11 of which had not been described previously. The virulence of the NIP1 types was tested on Rrs1 and rrs1 barley lines. Isolates carrying three of these types were virulent on the Rrs1 cultivar. One type each was found in California, Western Europe, and Jordan. Additionally, a field experiment with one pair of near-isogenic lines was conducted to study the selection pressure imposed by Rrs1 on field populations of R. secalis. Deletion of NIP1 was the only mechanism used to infect the Rrs1 cultivar in the field experiment. In this first comprehensive study on the population genetics of a fungal avirulence gene, virulence to Rrs1 in R. secalis was commonly achieved through deletion of the NIP1 avirulence gene but rarely also through point mutations in NIP1.
Plant Physiology | 1993
Lutz Wevelsiep; Elisabeth Rüpping; Wolfgang Knogge
A small family of necrosis-inducing peptides has been identified as virulence factors of Rhynchosporium secalis, a fungal pathogen of barley (Hordeum vulgare L.) Two members of this family, NIP1 and NIP3, were found to stimulate the phosphohydrolyzing activity of the Mg2+-dependent, K+-stimulated H+-ATPase of plasma membrane vesicles isolated from barley leaves by partitioning in an aqueous two-phase system. Stimulation of enzyme activity was saturated by 10 to 15 [mu]M fungal protein. Another member of the peptide family, NIP2, did not affect the enzyme, indicating that it has a different mode of action.
Physiological and Molecular Plant Pathology | 1991
Lutz Wevelsiep; Karl-Heinz Kogel; Wolfgang Knogge
A new class of toxic compounds has been identified in culture filtrates of the barley pathogen Rhynchosporium secalis race US238.1. Three necrosis-inducing peptides (NIPs) with relative ssmolecular masses of <10 kDa were purified to homogeneity. NIP1 and NIP2 appear to be non-glycosylated, but NIP3 is a glycopeptide, although its toxic activity resides in the peptide moiety. In bioassays, these toxins were host nonspecific since they caused necrosis in primary leaves of both resistant and susceptible near-isogenic cultivars. However, upon fungal infection, NIP3 and a peptide cross-reacting with antisera raised against NIP1, but with a higher relative molecular mass, were detected only in the susceptible cultivar. The appearance of both peptides in vivo correlated with lesion development. Their possible role in pathogenesis is discussed.
Molecular Plant-microbe Interactions | 2003
Sabine Steiner-Lange; Achim Fischer; Annette Boettcher; Ila Rouhara; Hiltrud Liedgens; Elmon Schmelzer; Wolfgang Knogge
Expression of defense-associated genes was analyzed in leaf tissues of near-isogenic resistant and susceptible barley cultivars upon infection by Rhynchosporium secalis. The genes encoding pathogenesis-related (PR) proteins PR-1, PR-5, and PR-9 are specifically expressed in the mesophyll of resistant plants, whereas a germin-like protein (OxOLP) is synthesized in the epidermis irrespective of the resistance genotype. Restriction-mediated differential display was employed to identify additional epidermis-specific genes. This resulted in the detection of another PR gene, PR-10, along with a lipoxygenase gene, LoxA, and a gene of unknown function, pI2-4, which are specifically induced in the epidermis of resistant plants. The gene encoding a putative protease inhibitor, SD10, is preferentially but not exclusively expressed in the epidermis. The fungal avirulence gene product NIP1 triggers the induction of the four PR genes only. At least two additional elicitors, therefore, must be postulated, one for the unspecific induction of OxOLP and one for the resistance-specific induction of LoxA, pI2-4, and SD10. PR-10 expression can be assumed to be the consequence of NIP1 perception by epidermis cells. In contrast, gene expression in the mesophyll is likely to be triggered by an as yet unknown signal that appears to originate in the epidermis and that is strongly amplified in the mesophyll.
Planta | 1987
Wolfgang Knogge; Erich Kombrink; Elmon Schmelzer; Klaus Hahlbrock
Considerable amounts of the following substances were found in uninfected parsley (Petroselinum crispum) cotyledons: furanocoumarins, the putative phytoalexins of this and some related plant species, two enzymes of the furanocoumarin pathway (S-adenosyl-L-methionine: xanthotoxol and S-adenosyl-L-methionine: bergaptol O-methyltransferases), two hydrolytic enzymes (1,3-β-glucanase, EC 3.2.1.39, and chitinase, EC 3.2.1.14), and ‘pathogenesis-related’ proteins. The furanocoumarins and the methyltransferase activities reached their highest levels at the onset of cotyledon senescence as the hydrolytic enzymes increased from low to relatively high activity values. The relative amounts of pathogenesis-related proteins 1 and 2, as well as the corresponding mRNAs, also increased markedly. Two enzymes of general phenylpropanoid metabolism, L-phenylalanine ammonia-lyase and 4-coumarate: CoA ligase, decreased in activity in a biphasic fashion during cotyledon development. At all developmental stages, the levels of these putative defense-related agents in total cotyledon extracts were too high to enable detection of, possibly, additional changes upon infection with zoospores of Phytophthora megasperma f. sp. glycinea, a fungal pathogen to which parsley shows a non-host, hypersensitive resistance response.
Molecular Biology and Evolution | 2014
Nichola J. Hawkins; Hans J. Cools; Helge Sierotzki; M. W. Shaw; Wolfgang Knogge; Steven L. Kelly; Diane E. Kelly; B. A. Fraaije
Evolution of resistance to drugs and pesticides poses a serious threat to human health and agricultural production. CYP51 encodes the target site of azole fungicides, widely used clinically and in agriculture. Azole resistance can evolve due to point mutations or overexpression of CYP51, and previous studies have shown that fungicide-resistant alleles have arisen by de novo mutation. Paralogs CYP51A and CYP51B are found in filamentous ascomycetes, but CYP51A has been lost from multiple lineages. Here, we show that in the barley pathogen Rhynchosporium commune, re-emergence of CYP51A constitutes a novel mechanism for the evolution of resistance to azoles. Pyrosequencing analysis of historical barley leaf samples from a unique long-term experiment from 1892 to 2008 indicates that the majority of the R. commune population lacked CYP51A until 1985, after which the frequency of CYP51A rapidly increased. Functional analysis demonstrates that CYP51A retains the same substrate as CYP51B, but with different transcriptional regulation. Phylogenetic analyses show that the origin of CYP51A far predates azole use, and newly sequenced Rhynchosporium genomes show CYP51A persisting in the R. commune lineage rather than being regained by horizontal gene transfer; therefore, CYP51A re-emergence provides an example of adaptation to novel compounds by selection from standing genetic variation.
Plant Physiology | 2007
Klaas A.E. van’t Slot; Angela Gierlich; Wolfgang Knogge
The effector protein NIP1 from the barley (Hordeum vulgare) pathogen Rhynchosporium secalis specifically induces the synthesis of defense-related proteins in cultivars of barley expressing the complementary resistance gene, Rrs1. In addition, it stimulates the activity of the barley plasma membrane H+-ATPase in a genotype-unspecific manner and it induces necrotic lesions in leaf tissues of barley and other cereal plant species. NIP1 variants type I and II, which display quantitative differences in their activities as elicitor and H+-ATPase stimulator, and the inactive mutant variants type III* and type IV*, were produced in Escherichia coli. Binding studies using 125I-NIP1 type I revealed a single class of binding sites with identical binding characteristics in microsomes from near-isogenic resistant (Rrs1) and susceptible (rrs1) barley. Binding was specific, reversible, and saturable, and saturation ligand-binding experiments yielded a Kd of 5.6 nm. A binding site was also found in rye (Secale cereale) and the nonhost species wheat (Triticum aestivum), oat (Avena sativa), and maize (Zea mays), but not in Arabidopsis (Arabidopsis thaliana). For NIP1 types I and II, equilibrium competition-binding experiments revealed a correlation between the difference in their affinities to the binding site and the differences in their elicitor activity and H+-ATPase stimulation, indicating a single target molecule to mediate both activities. In contrast, the inactive proteins type III* and type IV* are both characterized by high affinities similar to type I, suggesting that binding of NIP1 to this target is not sufficient for its activities.