Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfgang Lechner is active.

Publication


Featured researches published by Wolfgang Lechner.


Medical Physics | 2014

Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams

Godfrey Azangwe; P. Grochowska; Dietmar Georg; Joanna Izewska; Johannes Hopfgartner; Wolfgang Lechner; Claus E. Andersen; Anders Ravnsborg Beierholm; Jakob Helt-Hansen; Hideyuki Mizuno; Akifumi Fukumura; Kaori Yajima; C. Gouldstone; Peter Sharpe; Ahmed Meghzifene; Hugo Palmans

PURPOSE The aim of the present study is to provide a comprehensive set of detector specific correction factors for beam output measurements for small beams, for a wide range of real time and passive detectors. The detector specific correction factors determined in this study may be potentially useful as a reference data set for small beam dosimetry measurements. METHODS Dose response of passive and real time detectors was investigated for small field sizes shaped with a micromultileaf collimator ranging from 0.6 × 0.6 cm(2) to 4.2 × 4.2 cm(2) and the measurements were extended to larger fields of up to 10 × 10 cm(2). Measurements were performed at 5 cm depth, in a 6 MV photon beam. Detectors used included alanine, thermoluminescent dosimeters (TLDs), stereotactic diode, electron diode, photon diode, radiophotoluminescent dosimeters (RPLDs), radioluminescence detector based on carbon-doped aluminium oxide (Al2O3:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm(3) to 0.3 cm(3)). All detector measurements were corrected for volume averaging effect and compared with dose ratios determined from alanine to derive a detector correction factors that account for beam perturbation related to nonwater equivalence of the detector materials. RESULTS For the detectors used in this study, volume averaging corrections ranged from unity for the smallest detectors such as the diodes, 1.148 for the 0.14 cm(3) air filled ionization chamber and were as high as 1.924 for the 0.3 cm(3) ionization chamber. After applying volume averaging corrections, the detector readings were consistent among themselves and with alanine measurements for several small detectors but they differed for larger detectors, in particular for some small ionization chambers with volumes larger than 0.1 cm(3). CONCLUSIONS The results demonstrate how important it is for the appropriate corrections to be applied to give consistent and accurate measurements for a range of detectors in small beam geometry. The results further demonstrate that depending on the choice of detectors, there is a potential for large errors when effects such as volume averaging, perturbation and differences in material properties of detectors are not taken into account. As the commissioning of small fields for clinical treatment has to rely on accurate dose measurements, the authors recommend the use of detectors that require relatively little correction, such as unshielded diodes, diamond detectors or microchambers, and solid state detectors such as alanine, TLD, Al2O3:C, or scintillators.


Radiotherapy and Oncology | 2013

Detector comparison for small field output factor measurements in flattening filter free photon beams

Wolfgang Lechner; Hugo Palmans; Lukas Sölkner; P. Grochowska; Dietmar Georg

PURPOSE The applicability of various detectors for small field dosimetry and whether there are differences in the detector response when irradiated with FF- and FFF-beams was investigated. MATERIALS AND METHODS Output factors of 6 and 10 MV FF- and FFF-beams were measured with 14 different online detectors using field sizes between 10 × 10 and 0.6 × 0.6 cm(2) at a depth of 5 cm of water in isocentric conditions. Alanine pellets with a diameter of 5 and 2.5mm were used as reference dosimeters for field sizes down to 1.2 × 1.2 and 0.6 × 0.6 cm(2), respectively. The ratio of the relative output measured with the online detectors to the relative output measured with alanine was evaluated (referred to as dose response ratio). RESULTS The dose response ratios of two different shielded diodes measured with 10 MV FF-beams deviated substantially by 2-3% compared to FFF-beams at a field size of 0.6 × 0.6 cm(2). This difference was less pronounced for 6 MV FF- and FFF-beams. For all other detectors the dose response ratios of FF- and FFF-beams showed no significant difference. CONCLUSION The dose response ratios of the majority of the detectors agreed within the measurement uncertainty when irradiated with FF- and FFF-beams. Of all investigated detectors, the microDiamond and the unshielded diodes would require only small corrections which make them suitable candidates for small field dosimetry in FF- and FFF-beams.


Radiotherapy and Oncology | 2013

Evaluation of treatment plan quality of IMRT and VMAT with and without flattening filter using Pareto optimal fronts

Wolfgang Lechner; Gabriele Kragl; Dietmar Georg

PURPOSE To investigate the differences in treatment plan quality of IMRT and VMAT with and without flattening filter using Pareto optimal fronts, for two treatment sites of different anatomic complexity. MATERIALS AND METHODS Pareto optimal fronts (POFs) were generated for six prostate and head-and-neck cancer patients by stepwise reduction of the constraint (during the optimization process) of the primary organ-at-risk (OAR). 9-static field IMRT and 360°-single-arc VMAT plans with flattening filter (FF) and without flattening filter (FFF) were compared. The volume receiving 5 Gy or more (V5 Gy) was used to estimate the low dose exposure. Furthermore, the number of monitor units (MUs) and measurements of the delivery time (T) were used to assess the efficiency of the treatment plans. RESULTS A significant increase in MUs was found when using FFF-beams while the treatment plan quality was at least equivalent to the FF-beams. T was decreased by 18% for prostate for IMRT with FFF-beams and by 4% for head-and-neck cases, but increased by 22% and 16% for VMAT. A reduction of up to 5% of V5 Gy was found for IMRT prostate cases with FFF-beams. CONCLUSIONS The evaluation of the POFs showed an at least comparable treatment plan quality of FFF-beams compared to FF-beams for both treatment sites and modalities. For smaller targets the advantageous characteristics of FFF-beams could be better exploited.


Physics and Imaging in Radiation Oncology | 2018

Global availability of dosimetry audits in radiotherapy: The IAEA dosimetry audit networks database

Joanna Izewska; Wolfgang Lechner; Paulina Wesolowska

The International Atomic Energy Agency (IAEA) has established a database describing activities of dosimetry audit networks (DAN) in radiotherapy. Since 2010 the data on different aspects of the dosimetry audit have been collected. This information has allowed for the analysis and comparison of current practices in dosimetry auditing activities worldwide. Overall, 79 organizations in 58 countries confirmed that they offer dosimetry audit services for radiotherapy; however, access of radiotherapy centres to the audit remains insufficient. Increased availability of audits is necessary to improve dosimetry practices, reduce the likelihood of errors and the consequences that would result for patients’ health.


Zeitschrift Fur Medizinische Physik | 2016

Absorbed dose measurements in the build-up region of flattened versus unflattened megavoltage photon beams

Annemieke De Puysseleyr; Wolfgang Lechner; Wilfried De Neve; Dietmar Georg; Carlos De Wagter

This study evaluated absorbed dose measurements in the build-up region of conventional (FF) versus flattening filter-free (FFF) photon beams. The absorbed dose in the build-up region of static 6 and 10MV FF and FFF beams was measured using radiochromic film and extrapolation chamber dosimetry for single beams with a variety of field sizes, shapes and positions relative to the central axis. Removing the flattening filter generally resulted in slightly higher relative build-up doses. No considerable impact on the depth of maximum dose was found.


Physics and Imaging in Radiation Oncology | 2018

A multinational audit of small field output factors calculated by treatment planning systems used in radiotherapy

Wolfgang Lechner; Paulina Wesolowska; Godfrey Azangwe; Mehenna Arib; Victor Gabriel Leandro Alves; Luo Suming; Daniela Ekendahl; Wojciech Bulski; José Luis Alonso Samper; Sumanth Panyam Vinatha; Srimanoroth Siri; Milan Tomsej; Mikko Tenhunen; Julie Povall; Stephen F. Kry; D Followill; D.I. Thwaites; Dietmar Georg; Joanna Izewska

Background and purpose An audit methodology for verifying the implementation of output factors (OFs) of small fields in treatment planning systems (TPSs) used in radiotherapy was developed and tested through a multinational research group and performed on a national level in five different countries. Materials and methods Centres participating in this study were asked to provide OFs calculated by their TPSs for 10 × 10 cm2, 6 × 6 cm2, 4 × 4 cm2, 3 × 3 cm2 and 2 × 2 cm2 field sizes using an SSD of 100 cm. The ratio of these calculated OFs to reference OFs was analysed. The action limit was ±3% for the 2 × 2 cm2 field and ±2% for all other fields. Results OFs for more than 200 different beams were collected in total. On average, the OFs for small fields calculated by TPSs were generally larger than measured reference data. These deviations increased with decreasing field size. On a national level, 30% and 31% of the calculated OFs of the 2 × 2 cm2 field exceeded the action limit of 3% for nominal beam energies of 6 MV and for nominal beam energies higher than 6 MV, respectively. Conclusion Modern TPS beam models generally overestimate the OFs for small fields. The verification of calculated small field OFs is a vital step and should be included when commissioning a TPS. The methodology outlined in this study can be used to identify potential discrepancies in clinical beam models.


Physics in Medicine and Biology | 2017

Equivalent (uniform) square field sizes of flattening filter free photon beams

Wolfgang Lechner; Peter Kuess; Dietmar Georg; Hugo Palmans

Various types of treatment units, such as CyberKnife, TomoTherapy and C-arm linear accelerators (LINACs) are operated using flattening filter free (FFF) photon beams. Their reference dosimetry, however, is currently based on codes of practice that provide data which were primarily developed and tested for high-energy photon beams with flattening filter (WFF). The aim of this work was to introduce equivalent uniform square field sizes of FFF beams to serve as a basis of a unified reference dosimetry procedure applicable to all aforementioned FFF machines. For this purpose, in-house determined experimental data together with published data of the ratio of doses at depths of 20 cm and 10 cm in water (D 20,10) were used to characterize the depth dose distribution of 6 and 10 MV WFF and FFF beams. These data were analyzed for field sizes ranging from 2  ×  2 cm2 to 40  ×  40 cm2. A scatter function that takes the lateral profiles of the individual beams into account was fitted to the experimental data. The lateral profiles of the WFF beams were assumed to be uniform, while those of the FFF beams were approximated using fourth or sixth order polynomials. The scatter functions of the FFF beams were recalculated using a uniform lateral profile (the same as the physical profile of the WFF beams), and are henceforth denoted as virtual uniform FFF beams (VUFFF). The field sizes of the VUFFF beams having the same scatter contribution as the corresponding FFF beams at a given field size were defined as the equivalent uniform square field (EQUSF) size. Data from four different LINACs with 18 different beams in total, as well as a CyberKnife beam, were analyzed. The average values of EQUSFs over all investigated LINACs of the conventional 10  ×  10 cm2 reference fields of 6 MV and 10 MV FFF beams for C-arm LINACs and machine-specific reference fields for CyberKnife and TomoTherapy were 9.5 cm, 9 cm, 5.0 cm and 6.5 cm respectively. The standard deviation of the mean of these EQUSFs was below 0.1 cm. It has been shown that with the introduction of a VUFFF beam, EQUSFs can be consistently defined for a variety of energies and collimations. These EQUSFs can form the basis for a unified reference dosimetry protocol for all different types of FFF machines.


Physics in Medicine and Biology | 2017

Lateral response heterogeneity of Bragg peak ionization chambers for narrow-beam photon and proton dosimetry

Peter Kuess; T.T. Böhlen; Wolfgang Lechner; Alessio Elia; Dietmar Georg; Hugo Palmans

Large area ionization chambers (LAICs) can be used to measure output factors of narrow beams. Dose area product measurements are proposed as an alternative to central-axis point dose measurements. Using such detectors requires detailed information on the uniformity of the response along the sensitive area. Eight LAICs were investigated in this study: four of type PTW-34070 (LAICThick) and four of type PTW-34080 (LAICThin). Measurements were performed in an x-ray unit using peak voltages of 100-200 kVp and a collimated beam of 3.1 mm (FWHM). The LAICs were moved with a step size of 5 mm to measure the chamber response at lateral positions. To account for beam positions where only a fraction of the beam impinged within the sensitive area of the LAICs, a corrected response was calculated which was the basis to calculate the relative response. The impact of a heterogeneous LAIC response, based on the obtained response maps was henceforth investigated for proton pencil beams and small field photon beams. A pronounced heterogeneity of the responses was observed in the investigated LAICs. The response of LAICThick generally decreased with increasing radius, resulting in a response correction of up to 5%. This correction was more pronounced and more diverse (up to 10%) for LAICThin. Considering a proton pencil beam the systematic offset for reference dosimetry was 2.4-4.1% for LAICThick and  -9.5 to 9.4% for LAICThin. For relative dosimetry (e.g. integral depth-dose curves) systematic response variation by 0.8-1.9% were found. For a decreasing photon field size the systematic offset for absolute dose measurements showed a 2.5-4.5% overestimation of the response for 6  ×  6 mm2 field sizes for LAICThick. For LAICThin the response varied even over a range of 20%. This study highlights the need for chamber-dependent response maps when using LAICs for absolute and relative dosimetry with proton pencil beams or small photon beams.


Physics in Medicine and Biology | 2018

Characteristic of EBT-XD and EBT3 radiochromic film dosimetry for photon and proton beams

Suphalak Khachonkham; R. Dreindl; G. Heilemann; Wolfgang Lechner; Hermann Fuchs; Hugo Palmans; Dietmar Georg; Peter Kuess

Recently, a new type of radiochromic film, the EBT-XD film, has been introduced for high dose radiotherapy. The EBT-XD film contains the same structure as the EBT3 film but has a slightly different composition and a thinner active layer. This study benchmarks the EBT-XD against EBT3 film for 6 MV and 10 MV photon beams, as well as for 97.4 MeV and 148.2 MeV proton beams and 15-100 kV x-rays. Dosimetric and film reading characteristics, such as post irradiation darkening, film orientation effect, lateral response artifact (LRA), film sensitivity, energy and beam quality dependency were investigated. Furthermore, quenching effects in the Bragg peak were investigated for a single proton beam energy for both film types, in addition measurements were performed in a spread-out Bragg peak. EBT-XD films showed the same characteristic on film darkening as EBT3. The effects between portrait and landscape orientation were reduced by 3.1% (in pixel value) for EBT-XD compared to EBT3 at a dose of 2000 cGy. The LRA is reduced for EBT-XD films for all investigated dose ranges. The sensitivity of EBT-XD films is superior to EBT3 for doses higher than 500 cGy. In addition, EBT-XD showed a similar dosimetric response for photon and proton irradiation with low energy and beam quality dependency. A quenching effect of 10% was found for both film types. The slight decrease in the thickness of the active layer and different composition configuration of EBT-XD resulted in a reduced film orientation effect and LRA, as well as a sensitivity increase in high-dose regions for both photon and proton beams. Overall, the EBT-XD film improved regarding film reading characteristics and showed advantages in the high-dose region for photon and proton beams.


Clinical Otolaryngology | 2018

The effect of adjuvant radiotherapy on radial forearm free flap volume after soft palate reconstruction in 13 patients

Georg Haymerle; E. Enzenhofer; Wolfgang Lechner; M. Stock; A. Schratter-Sehn; E. Vyskocil; B. Bachtiary; E. Selzer; Boban M. Erovic

Dear Editor, Treatment options for squamous cell carcinoma of the soft palate include surgical resection followed by radiotherapy or primary radiotherapy. In most cases, sufficient resection margins require reconstruction of the defect with free flaps. The most common flaps used in oropharyngeal carcinoma are the radial forearm free flap and the anterolateral thigh and latissimus dorsi free flap. According to the magnitude of the resection defect, surgeons estimate the size and volume of soft tissue transfer needed for an optimal aesthetic and in particular functional outcome. This, however, depicts a great challenge as a high variability in the extent of volume loss in free flaps has been described in previous studies. In particular, flap volume loss ranged between 10% and 39% after reconstruction of oropharyngeal defects. The speech and swallowing outcome are influenced by various factors including tumour size, patient age, prior treatment neck dissection and comorbidities such as diabetes mellitus, cerebrovascular disease and hypertension. Current literature emphasises a general overcorrection for oropharyngeal reconstruction regardless of postoperative irradiation. The aim of our present study, therefore, was to evaluate the effect of radiation therapy on the volume shrinkage after reconstruction of the soft palate with radial forearm free flap.

Collaboration


Dive into the Wolfgang Lechner's collaboration.

Top Co-Authors

Avatar

Dietmar Georg

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Hugo Palmans

National Physical Laboratory

View shared research outputs
Top Co-Authors

Avatar

Peter Kuess

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Joanna Izewska

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Gabriele Kragl

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

P. Grochowska

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

G. Heilemann

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

R. Dreindl

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Godfrey Azangwe

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Paulina Wesolowska

International Atomic Energy Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge