Wolfgang-Moritz Heupel
University of Würzburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wolfgang-Moritz Heupel.
Journal of Immunology | 2008
Wolfgang-Moritz Heupel; Detlef Zillikens; Detlev Drenckhahn; Jens Waschke
The autoimmune blistering skin disease pemphigus is caused by autoantibodies against keratinocyte surface Ags. In pemphigus vulgaris (PV), autoantibodies are primarily directed against desmosomal cadherins desmoglein (Dsg) 3 and Dsg 1, whereas pemphigus foliaceus (PF) patients only have Abs against Dsg 1. At present, it is unclear whether Dsg autoantibodies contribute to pemphigus pathogenesis by direct inhibition of Dsg transinteraction. Using atomic force microscopy, we provide evidence that PV-IgG directly interfere with homophilic Dsg 3 but, similar to PF-IgG, not with homophilic Dsg 1 transinteraction, indicating that the molecular mechanisms in PV and PF pathogenesis substantially differ. PV-IgG (containing Dsg 3 or Dsg 1 and Dsg 3 autoantibodies) as well as PV-IgG Fab reduced binding activity of Dsg 3 by ∼60%, comparable to Ca2+ depletion. Similarly, the mouse monoclonal PV Ab AK 23 targeting the N-terminal Dsg 3 domain and AK 23 Fab reduced Dsg 3 transinteraction. In contrast, neither PV-IgG nor PF-IgG blocked Dsg 1 transinteraction. In HaCaT monolayers, however, both PV- and PF-IgG caused keratinocyte dissociation as well as loss of Dsg 1 and Dsg 3 transinteraction as revealed by laser tweezer assay. These data demonstrate that PV-IgG and PF-IgG reduce Dsg transinteraction by cell-dependent mechanisms and suggest that in addition, Abs to Dsg 3 contribute to PV by direct inhibition of Dsg transinteraction.
Journal of Biological Chemistry | 2009
Volker Spindler; Wolfgang-Moritz Heupel; Athina Efthymiadis; Enno Schmidt; Rüdiger Eming; Christian Rankl; Peter Hinterdorfer; Thomas Müller; Detlev Drenckhahn; Jens Waschke
Desmocollin (Dsc) 1–3 and desmoglein (Dsg) 1–4, transmembrane proteins of the cadherin family, form the adhesive core of desmosomes. Here we provide evidence that Dsc3 homo- and heterophilic trans-interaction is crucial for epidermal integrity. Single molecule atomic force microscopy (AFM) revealed homophilic trans-interaction of Dsc3. Dsc3 displayed heterophilic interaction with Dsg1 but not with Dsg3. A monoclonal antibody targeted against the extracellular domain reduced homophilic and heterophilic binding as measured by AFM, caused intraepidermal blistering in a model of human skin, and a loss of intercellular adhesion in cultured keratinocytes. Because autoantibodies against Dsg1 are associated with skin blistering in pemphigus, we characterized the role of Dsc3 binding for pemphigus pathogenesis. In contrast to AFM experiments, laser tweezer trapping revealed that pemphigus autoantibodies reduced binding of Dsc3-coated beads to the keratinocyte cell surface. These data indicate that loss of heterophilic Dsc3/Dsg1 binding may contribute to pemphigus skin blistering.
Journal of Biological Chemistry | 2010
Annarita Graziani; Michael Poteser; Wolfgang-Moritz Heupel; Hannes Schleifer; Martin Krenn; Detlev Drenckhahn; Christoph Romanin; Werner Baumgartner; Klaus Groschner
TRPC4 is well recognized as a prominent cation channel in the vascular endothelium, but its contribution to agonist-induced endothelial Ca2+ entry is still a matter of controversy. Here we report that the cellular targeting and Ca2+ signaling function of TRPC4 is determined by the state of cell-cell adhesions during endothelial phenotype transitions. TRPC4 surface expression in human microvascular endothelial cells (HMEC-1) increased with the formation of cell-cell contacts. Epidermal growth factor recruited TRPC4 into the plasma membrane of proliferating cells but initiated retrieval of TRPC4 from the plasma membrane in quiescent, barrier-forming cells. Epidermal growth factor-induced Ca2+ entry was strongly promoted by the formation of cell-cell contacts, and both siRNA and dominant negative knockdown experiments revealed that TRPC4 mediates stimulated Ca2+ entry exclusively in proliferating clusters that form immature cell-cell contacts. TRPC4 co-precipitated with the junctional proteins β-catenin and VE-cadherin. Analysis of cellular localization of fluorescent fusion proteins provided further evidence for recruitment of TRPC4 into junctional complexes. Analysis of TRPC4 function in the HEK293 expression system identified β-catenin as a signaling molecule that enables cell-cell contact-dependent promotion of TRPC4 function. Our results place TRPC4 as a Ca2+ entry channel that is regulated by cell-cell contact formation and interaction with β-catenin. TRPC4 is suggested to serve stimulated Ca2+ entry in a specific endothelial state during the transition from a proliferating to a quiescent phenotype. Thus, TRPC4 may adopt divergent, as yet unappreciated functions in endothelial Ca2+ homeostasis and emerges as a potential key player in endothelial phenotype switching and tuning of cellular growth factor signaling.
American Journal of Physiology-cell Physiology | 2010
Martin Gliem; Wolfgang-Moritz Heupel; Volker Spindler; Gregory S. Harms; Jens Waschke
In the human autoimmune blistering skin disease pemphigus vulgaris autoantibodies (PV-IgG), which are mainly directed against keratinocyte cell adhesion molecules desmoglein (Dsg) 3 and Dsg1, cause keratinocyte cell dissociation (acantholysis). Recent studies reported that loss of keratinocyte cell adhesion was accompanied by profound alterations of the actin cytoskeleton. Nevertheless, the relevance of actin reorganization in this process is unclear at present. In this study, we provide evidence for an important role of actin reorganization in pemphigus pathogenesis. In parallel to loss of cell adhesion and fragmentation of Dsg3 staining along cell borders, PV-IgG treatment resulted in striking changes in actin cytoskeleton organization. Moreover, in experiments using fluorescence recovery after photobleaching (FRAP), PV-IgG were detected to interfere with actin dynamics. Therefore, we investigated whether pharmacological manipulation of actin polymerization modulates pathogenic effects of PV-IgG. Pharmacological stabilization of actin filaments via jasplakinolide significantly blocked cell dissociation and Dsg3 fragmentation, whereas cytochalasin D-induced actin depolymerization strongly enhanced pathogenic effects of PV-IgG. To substantiate these findings, we studied whether the protective effects of Rho GTPases, which are potent regulators of the actin cytoskeleton and were shown to be involved in pemphigus pathogenesis, were dependent on modulation of actin dynamics. Cytotoxic necrotizing factor-1 (CNF-1)-mediated activation of Rho-GTPases enhanced the cortical junction-associated actin belt and blunted PV-IgG-induced cell dissociation. However, when actin polymerization was blocked under these conditions via addition of latrunculin B, the protective effects of CNF-1 were abrogated. Taken together, these experiments indicate that reorganization of cortical actin filaments is a critical step in PV-IgG-induced keratinocyte dissociation.
American Journal of Pathology | 2009
Wolfgang-Moritz Heupel; Peter Engerer; Enno Schmidt; Jens Waschke
Autoantibody-induced cellular signaling mechanisms contribute to the pathogenesis of autoimmune blistering skin disease pemphigus vulgaris (PV). Recently, it was proposed that epidermal growth factor receptor (EGFR) might be involved in PV signaling pathways. In this study, we investigated the role of EGFR by comparing the effects of epidermal growth factor (EGF) and PV-IgG on the immortalized human keratinocyte cell line HaCaT, and primary normal human keratinocytes. In contrast to EGF treatment, PV-IgG neither caused the canonical activation of EGFR via phosphorylation at tyrosine (Y)1173 followed by internalization of EGFR nor the phosphorylation of the EGFR at the c-Src-dependent site Y845. Nevertheless, both PV-IgG and EGF led to cell dissociation and cytokeratin retraction in keratinocyte monolayers. Moreover, the effects of EGF were blocked by inhibition of EGFR and c-Src whereas the effects of PV-IgG were independent of both signaling pathways. Similarly, laser tweezer experiments revealed that impaired bead binding of epidermal cadherins desmoglein (Dsg) 3 and Dsg 1 in response to PV-IgG was not affected by inhibition of either EGFR or c-Src. In contrast, EGF treatment did not interfere with Dsg bead binding. Taken together, our study indicates that the loss of Dsg-mediated adhesion and keratinocyte dissociation in pemphigus is independent of EGFR. Moreover, the mechanisms by which both EGF and PV-IgG lead to keratinocyte dissociation and cytokeratin retraction appear to be different.
Journal of Biological Chemistry | 2009
Wolfgang-Moritz Heupel; Thomas Müller; Athina Efthymiadis; Enno Schmidt; Detlev Drenckhahn; Jens Waschke
Pemphigus vulgaris (PV) autoantibodies directly inhibit desmoglein (Dsg) 3-mediated transinteraction. Because cellular signaling also seems to be required for PV pathogenesis, it is important to characterize the role of direct inhibition in pemphigus acantholysis to allow establishment of new therapeutic approaches. Therefore, we modeled the Dsg1 and Dsg3 sequences into resolved cadherin structures and predicted peptides targeting the adhesive interface of both Dsg3 and Dsg1. In atomic force microscopy single molecule experiments, the self-designed cyclic single peptide specifically blocked homophilic Dsg3 and Dsg1 transinteraction, whereas a tandem peptide (TP) consisting of two combined single peptides did not. TP did not directly block binding of pemphigus IgG to their target Dsg antigens but prevented PV-IgG-induced inhibition of Dsg3 transinteraction in cell-free (atomic force microscopy) and cell-based (laser tweezer) experiments, indicating stabilization of Dsg3 bonds. Similarly, PV-IgG-mediated acantholysis and disruption of Dsg3 localization in HaCaT keratinocytes was partially blocked by TP. This is the first evidence that direct inhibition of Dsg3 binding is important for PV pathogenesis and that peptidomimetics stabilizing Dsg transinteraction may provide a novel approach for PV treatment.
Journal of Cell Science | 2009
Wolfgang-Moritz Heupel; Athina Efthymiadis; Nicolas Schlegel; Thomas Müller; Yvonne Baumer; Werner Baumgartner; Detlev Drenckhahn; Jens Waschke
Inflammatory stimuli result in vascular leakage with potentially life threatening consequences. As a key barrier component, loss of vascular endothelial (VE-) cadherin-mediated adhesion often precedes endothelial breakdown. This study aimed to stabilize VE-cadherin transinteraction and endothelial barrier function using peptides targeting the VE-cadherin adhesive interface. After modelling the transinteracting VE-cadherin structure, an inhibiting single peptide (SP) against a VE-cadherin binding pocket was selected, which specifically blocked VE-cadherin transinteraction as analyzed by single molecule atomic force microscopy (AFM). The tandem peptide (TP) consisting of two SP sequences in tandem was designed to strengthen VE-cadherin adhesion by simultaneously binding and cross-bridging two interacting cadherin molecules. Indeed, in AFM experiments TP specifically rendered VE-cadherin transinteraction resistant against an inhibitory monoclonal antibody. Moreover, TP reduced VE-cadherin lateral mobility and enhanced binding of VE-cadherin-coated microbeads to cultured endothelial cells, but acted independently of the actin cytoskeleton. TP also stabilized endothelial barrier properties against the Ca2+ ionophore A23187 and the inhibitory antibody. Finally, TP abolished endothelial permeability increase induced by tumour necrosis factor-α in microperfused venules in vivo. Stabilization of VE-cadherin adhesion by cross-bridging peptides may therefore be a novel therapeutic approach for the treatment of vascular hyperpermeability.
Molecular and Cellular Neuroscience | 2008
Wolfgang-Moritz Heupel; Werner Baumgartner; B. Laymann; Detlev Drenckhahn; Nikola Golenhofen
Cadherins of synaptic complexes are considered to be critically involved in long-term potentiation (LTP). Here we compared biophysical properties of cadherin-11 and N-cadherin, which appear to exert opposing effects on LTP, i.e., inhibition and promotion, respectively. Characterization of cadherin-11 binding by atomic force microscopy and laser tweezers revealed a significantly higher Ca(2+) affinity, with half-maximal binding (K(D)) at 0.11-0.26 mM Ca(2+), as compared to N-cadherin (K(D) approximately 0.7 mM Ca(2+)). Adhesive properties of both cadherins were modulated to a similar degree by manipulation of the actin cytoskeleton indicating to unlikely account for opposing roles in LTP induction. However, differences in Ca(2+) affinity could well explain opposing binding properties during activity-dependent transient reduction of extracellular Ca(2+) ([Ca(2+)](e)) in the synaptic cleft: whereas high frequency stimulation with drop of [Ca(2+)](e) to 0.3-0.8 mM Ca(2+) will result in significant weakening of N-cadherin adhesion, cadherin-11-based adhesion will stay mostly stable. Reduction of N-cadherin adhesion may facilitate synaptic remodeling and LTP induction, while cadherin-11 adhesion with its higher stability at low [Ca(2+)](e) may counteract this process explaining why in cadherin-11-deficient mice LTP is increased rather than decreased.
Histochemistry and Cell Biology | 2010
Wolfgang-Moritz Heupel; Detlev Drenckhahn
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird’s- up to worm’s-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in “histo-biochemical” techniques and their manifold applications.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2010
Nicolas Schlegel; Michael Meir; Wolfgang-Moritz Heupel; Bastian Holthöfer; Rudolf E. Leube; Jens Waschke