Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfgang Nitschke is active.

Publication


Featured researches published by Wolfgang Nitschke.


Trends in Biochemical Sciences | 1991

Photosynthetic reaction centres: variations on a common structural theme?

Wolfgang Nitschke; A. William Rutherford

From their hybrid properties, the reaction centres of green sulphur bacteria and heliobacteria seem to be the missing links between the two branches of the reaction centre family, typified by higher plant photosystem I and the purple bacterial reaction centre. This suggests that all of the diverse types of photosynthetic reaction centres have closer structural resemblances than was previously thought.


PLOS Genetics | 2005

A tale of two oxidation states: bacterial colonization of arsenic-rich environments.

Daniel Muller; Claudine Médigue; Sandrine Koechler; Valérie Barbe; Mohamed Barakat; Emmanuel Talla; Violaine Bonnefoy; Evelyne Krin; Florence Arsène-Ploetze; Christine Carapito; Michael Chandler; Benoit Cournoyer; Stéphane Cruveiller; Caroline Dossat; Simon Duval; Michaël Heymann; Emmanuelle Leize; Aurélie Lieutaud; Didier Lièvremont; Yuko Makita; Sophie Mangenot; Wolfgang Nitschke; Philippe Ortet; Nicolas Perdrial; Barbara Schoepp; Patricia Siguier; Diliana D. Simeonova; Zoé Rouy; Béatrice Segurens; Evelyne Turlin

Microbial biotransformations have a major impact on contamination by toxic elements, which threatens public health in developing and industrial countries. Finding a means of preserving natural environments—including ground and surface waters—from arsenic constitutes a major challenge facing modern society. Although this metalloid is ubiquitous on Earth, thus far no bacterium thriving in arsenic-contaminated environments has been fully characterized. In-depth exploration of the genome of the β-proteobacterium Herminiimonas arsenicoxydans with regard to physiology, genetics, and proteomics, revealed that it possesses heretofore unsuspected mechanisms for coping with arsenic. Aside from multiple biochemical processes such as arsenic oxidation, reduction, and efflux, H. arsenicoxydans also exhibits positive chemotaxis and motility towards arsenic and metalloid scavenging by exopolysaccharides. These observations demonstrate the existence of a novel strategy to efficiently colonize arsenic-rich environments, which extends beyond oxidoreduction reactions. Such a microbial mechanism of detoxification, which is possibly exploitable for bioremediation applications of contaminated sites, may have played a crucial role in the occupation of ancient ecological niches on earth.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Characterization of a unique [FeS] cluster in the electron transfer chain of the oxygen tolerant [NiFe] hydrogenase from Aquifex aeolicus

Maria-Eirini Pandelia; Wolfgang Nitschke; Pascale Infossi; Marie-Thérèse Giudici-Orticoni; Eckhard Bill; Wolfgang Lubitz

Iron-sulfur clusters are versatile electron transfer cofactors, ubiquitous in metalloenzymes such as hydrogenases. In the oxygen-tolerant Hydrogenase I from Aquifex aeolicus such electron “wires” form a relay to a diheme cytb, an integral part of a respiration pathway for the reduction of O2 to water. Amino acid sequence comparison with oxygen-sensitive hydrogenases showed conserved binding motifs for three iron-sulfur clusters, the nature and properties of which were unknown so far. Electron paramagnetic resonance spectra exhibited complex signals that disclose interesting features and spin-coupling patterns; by redox titrations three iron-sulfur clusters were identified in their usual redox states, a [3Fe4S] and two [4Fe4S], but also a unique high-potential (HP) state was found. On the basis of 57Fe Mössbauer spectroscopy we attribute this HP form to a superoxidized state of the [4Fe4S] center proximal to the [NiFe] site. The unique environment of this cluster, characterized by a surplus cysteine coordination, is able to tune the redox potentials and make it compliant with the [4Fe4S]3+ state. It is actually the first example of a biological [4Fe4S] center that physiologically switches between 3+, 2+, and 1+ oxidation states within a very small potential range. We suggest that the (1 + /2+) redox couple serves the classical electron transfer reaction, whereas the superoxidation step is associated with a redox switch against oxidative stress.


Trends in Biochemical Sciences | 2009

Was nitric oxide the first deep electron sink

Anne-Lise Ducluzeau; Robert van Lis; Simon Duval; Barbara Schoepp-Cothenet; Michael J. Russell; Wolfgang Nitschke

Evolutionary histories of enzymes involved in chemiosmotic energy conversion indicate that a strongly oxidizing substrate was available to the last universal common ancestor before the divergence of Bacteria and Archaea. According to palaeogeochemical evidence, O(2) was not present beyond trace amounts on the early Earth. Based on recent phylogenetic, enzymatic and geochemical results, we propose that, in the earliest Archaean, nitric oxide (NO) and its derivatives nitrate and nitrite served as strongly oxidizing substrates driving the evolution of a bioenergetic pathway related to modern dissimilatory denitrification. Aerobic respiration emerged later from within this ancestral pathway via adaptation of the enzyme NO reductase to its new substrate, dioxygen.


Extremophiles | 2003

[NiFe] hydrogenases from the hyperthermophilic bacterium Aquifex aeolicus : properties, function, and phylogenetics

Marianne Brugna-Guiral; Pascale Tron; Wolfgang Nitschke; Karl-Otto Stetter; Bénédicte Burlat; Bruno Guigliarelli; Mireille Bruschi; Marie Thérèse Giudici-Orticoni

Genes potentially coding for three distinct [NiFe] hydrogenases are present in the genome of Aquifex aeolicus. We have demonstrated that all three hydrogenases are expressed under standard growth conditions of the organism. Two hydrogenases were further purified to homogeneity. A periplasmically oriented hydrogenase was obtained in two forms, i.e., as a soluble enzyme containing only the two essential subunits and as a detergent-solubilized complex additionally containing a membrane-integral b-type cytochrome. The second hydrogenase purified was identified as a soluble cytoplasmic enzyme. The isolated enzymes were characterized with respect to biochemical/biophysical parameters, activity, thermostability, and substrate specificity. The phylogenetic positioning of all three hydrogenases was analyzed. A model for the metabolic roles of the three enzymes is proposed on the basis of the obtained results.


Journal of Molecular Evolution | 2009

Hydrothermal Focusing of Chemical and Chemiosmotic Energy, Supported by Delivery of Catalytic Fe, Ni, Mo/W, Co, S and Se, Forced Life to Emerge

Wolfgang Nitschke; Michael J. Russell

Energised by the protonmotive force and with the intervention of inorganic catalysts, at base Life reacts hydrogen from a variety of sources with atmospheric carbon dioxide. It seems inescapable that life emerged to fulfil the same role (i.e., to hydrogenate CO2) on the early Earth, thus outcompeting the slow geochemical reduction to methane. Life would have done so where hydrothermal hydrogen interfaced a carbonic ocean through inorganic precipitate membranes. Thus we argue that the first carbon-fixing reaction was the molybdenum-dependent, proton-translocating formate hydrogenlyase system described by Andrews et al. (Microbiology 143:3633–3647, 1997), but driven in reverse. Alkaline on the inside and acidic and carbonic on the outside - a submarine chambered hydrothermal mound built above an alkaline hydrothermal spring of long duration - offered just the conditions for such a reverse reaction imposed by the ambient protonmotive force. Assisted by the same inorganic catalysts and potential energy stores that were to evolve into the active centres of enzymes supplied variously from ocean or hydrothermal system, the formate reaction enabled the rest of the acetyl coenzyme-A pathway to be followed exergonically, first to acetate, then separately to methane. Thus the two prokaryotic domains both emerged within the hydrothermal mound—the acetogens were the forerunners of the Bacteria and the methanogens were the forerunners of the Archaea.


Biochimica et Biophysica Acta | 2001

Daddy, where did (PS)I come from?

Frauke Baymann; Myriam Brugna; Ulrich Mühlenhoff; Wolfgang Nitschke

The reacton centre I (RCI)-type photosystems from plants, cyano-, helio- and green sulphur bacteria are compared and the essential properties of an archetypal RCI are deduced. Species containing RCI-type photosystems most probably cluster together on a common branch of the phylogenetic tree. The predicted branching order is green sulphur, helio- and cyanobacteria. Striking similarities between RCI- and RCII-type photosystems recently became apparent in the three-dimensional structures of photosystem I (PSI), PSII and RCII. The phylogenetic relationship between all presently known photosystems is analysed suggesting (a) RCI as the ancestral photosystem and (b) the descendence of PSII from RCI via gene duplication and gene splitting. An evolutionary model trying to rationalise available data is presented.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Menaquinone as pool quinone in a purple bacterium

Barbara Schoepp-Cothenet; Clément Lieutaud; Frauke Baymann; André Verméglio; Thorsten Friedrich; David M. Kramer; Wolfgang Nitschke

Purple bacteria have thus far been considered to operate light-driven cyclic electron transfer chains containing ubiquinone (UQ) as liposoluble electron and proton carrier. We show that in the purple γ-proteobacterium Halorhodospira halophila, menaquinone-8 (MK-8) is the dominant quinone component and that it operates in the QB-site of the photosynthetic reaction center (RC). The redox potentials of the photooxidized pigment in the RC and of the Rieske center of the bc1 complex are significantly lower (Em = +270 mV and +110 mV, respectively) than those determined in other purple bacteria but resemble those determined for species containing MK as pool quinone. These results demonstrate that the photosynthetic cycle in H. halophila is based on MK and not on UQ. This finding together with the unusual organization of genes coding for the bc1 complex in H. halophila suggests a specific scenario for the evolutionary transition of bioenergetic chains from the low-potential menaquinones to higher-potential UQ in the proteobacterial phylum, most probably induced by rising levels of dioxygen 2.5 billion years ago. This transition appears to necessarily proceed through bioenergetic ambivalence of the respective organisms, that is, to work both on MK- and on UQ-pools. The establishment of the corresponding low- and high-potential chains was accompanied by duplication and redox optimization of the bc1 complex or at least of its crucial subunit oxidizing quinols from the pool, the Rieske protein. Evolutionary driving forces rationalizing the empirically observed redox tuning of the chain to the quinone pool are discussed.


Biochimica et Biophysica Acta | 2013

On the universal core of bioenergetics.

Barbara Schoepp-Cothenet; Robert van Lis; Ariane Atteia; Frauke Baymann; Line Capowiez; Anne-Lise Ducluzeau; Simon Duval; Felix ten Brink; Michael J. Russell; Wolfgang Nitschke

Living cells are able to harvest energy by coupling exergonic electron transfer between reducing and oxidising substrates to the generation of chemiosmotic potential. Whereas a wide variety of redox substrates is exploited by prokaryotes resulting in very diverse layouts of electron transfer chains, the ensemble of molecular architectures of enzymes and redox cofactors employed to construct these systems is stunningly small and uniform. An overview of prominent types of electron transfer chains and of their characteristic electrochemical parameters is presented. We propose that basic thermodynamic considerations are able to rationalise the global molecular make-up and functioning of these chemiosmotic systems. Arguments from palaeogeochemistry and molecular phylogeny are employed to discuss the evolutionary history leading from putative energy metabolisms in early life to the chemiosmotic diversity of extant organisms. Following the Occams razor principle, we only considered for this purpose origin of life scenarios which are contiguous with extant life. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.


Philosophical Transactions of the Royal Society B | 2013

The inevitable journey to being

Michael J. Russell; Wolfgang Nitschke; Elbert Branscomb

Life is evolutionarily the most complex of the emergent symmetry-breaking, macroscopically organized dynamic structures in the Universe. Members of this cascading series of disequilibria-converting systems, or engines in Cottrells terminology, become ever more complicated—more chemical and less physical—as each engine extracts, exploits and generates ever lower grades of energy and resources in the service of entropy generation. Each one of these engines emerges spontaneously from order created by a particular mother engine or engines, as the disequilibrated potential daughter is driven beyond a critical point. Exothermic serpentinization of ocean crust is lifes mother engine. It drives alkaline hydrothermal convection and thereby the spontaneous production of precipitated submarine hydrothermal mounds. Here, the two chemical disequilibria directly causative in the emergence of life spontaneously arose across the mineral precipitate membranes separating the acidulous, nitrate-bearing CO2-rich, Hadean sea from the alkaline and CH4/H2-rich serpentinization-generated effluents. Essential redox gradients—involving hydrothermal CH4 and H2 as electron donors, CO2 and nitrate, nitrite, and ferric iron from the ambient ocean as acceptors—were imposed which functioned as the original ‘carbon-fixing engine’. At the same time, a post-critical-point (milli)voltage pH potential (proton concentration gradient) drove the condensation of orthophosphate to produce a high energy currency: ‘the pyrophosphatase engine’.

Collaboration


Dive into the Wolfgang Nitschke's collaboration.

Top Co-Authors

Avatar

Barbara Schoepp-Cothenet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Frauke Baymann

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Michael J. Russell

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Myriam Brugna

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mireille Bruschi

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Robert van Lis

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Simon Duval

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Günter Hauska

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar

Ursula Liebl

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge