Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfgang R. Hess is active.

Publication


Featured researches published by Wolfgang R. Hess.


Nature | 2003

Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation

Gabrielle Rocap; Frank W. Larimer; Jane E. Lamerdin; Stephanie Malfatti; Patrick Chain; Nathan A. Ahlgren; Andrae Arellano; Maureen L. Coleman; Loren Hauser; Wolfgang R. Hess; Zackary I. Johnson; Miriam Land; Debbie Lindell; Anton F. Post; Warren Regala; Manesh B Shah; Stephanie L. Shaw; Claudia Steglich; Matthew B. Sullivan; Claire S. Ting; Andrew C. Tolonen; Eric A. Webb; Erik R. Zinser; Sallie W. Chisholm

The marine unicellular cyanobacterium Prochlorococcus is the smallest-known oxygen-evolving autotroph. It numerically dominates the phytoplankton in the tropical and subtropical oceans, and is responsible for a significant fraction of global photosynthesis. Here we compare the genomes of two Prochlorococcus strains that span the largest evolutionary distance within the Prochlorococcus lineage and that have different minimum, maximum and optimal light intensities for growth. The high-light-adapted ecotype has the smallest genome (1,657,990 base pairs, 1,716 genes) of any known oxygenic phototroph, whereas the genome of its low-light-adapted counterpart is significantly larger, at 2,410,873 base pairs (2,275 genes). The comparative architectures of these two strains reveal dynamic genomes that are constantly changing in response to myriad selection pressures. Although the two strains have 1,350 genes in common, a significant number are not shared, and these have been differentially retained from the common ancestor, or acquired through duplication or lateral transfer. Some of these genes have obvious roles in determining the relative fitness of the ecotypes in response to key environmental variables, and hence in regulating their distribution and abundance in the oceans.


Nature Biotechnology | 2007

Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42.

Xiao Hua Chen; Alexandra Koumoutsi; Romy Scholz; Andreas Eisenreich; Kathrin Schneider; Isabelle Heinemeyer; Burkhard Morgenstern; Björn Voss; Wolfgang R. Hess; Oleg N. Reva; Helmut Junge; Birgit Voigt; Peter R. Jungblut; Joachim Vater; Roderich D. Süssmuth; Heiko Liesegang; Axel Strittmatter; Gerhard Gottschalk; Rainer Borriss

Bacillus amyloliquefaciens FZB42 is a Gram-positive, plant-associated bacterium, which stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. Its 3,918-kb genome, containing an estimated 3,693 protein-coding sequences, lacks extended phage insertions, which occur ubiquitously in the closely related Bacillus subtilis 168 genome. The B. amyloliquefaciens FZB42 genome reveals an unexpected potential to produce secondary metabolites, including the polyketides bacillaene and difficidin. More than 8.5% of the genome is devoted to synthesizing antibiotics and siderophores by pathways not involving ribosomes. Besides five gene clusters, known from B. subtilis to mediate nonribosomal synthesis of secondary metabolites, we identified four giant gene clusters absent in B. subtilis 168. The pks2 gene cluster encodes the components to synthesize the macrolactin core skeleton.


Microbiology and Molecular Biology Reviews | 2009

Ecological Genomics of Marine Picocyanobacteria

David J. Scanlan; Martin Ostrowski; Sophie Mazard; Alexis Dufresne; Laurence Garczarek; Wolfgang R. Hess; Anton F. Post; Martin Hagemann; Ian T. Paulsen; Frédéric Partensky

SUMMARY Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45°N to 40°S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome

Alexis Dufresne; Marcel Salanoubat; Frédéric Partensky; François Artiguenave; Ilka M. Axmann; Valérie Barbe; Simone Duprat; Michael Y. Galperin; Eugene V. Koonin; Florence Le Gall; Kira S. Makarova; Martin Ostrowski; Sophie Oztas; Catherine Robert; Igor B. Rogozin; David J. Scanlan; Nicole Tandeau de Marsac; Jean Weissenbach; Patrick Wincker; Yuri I. Wolf; Wolfgang R. Hess

Prochlorococcus marinus, the dominant photosynthetic organism in the ocean, is found in two main ecological forms: high-light-adapted genotypes in the upper part of the water column and low-light-adapted genotypes at the bottom of the illuminated layer. P. marinus SS120, the complete genome sequence reported here, is an extremely low-light-adapted form. The genome of P. marinus SS120 is composed of a single circular chromosome of 1,751,080 bp with an average G+C content of 36.4%. It contains 1,884 predicted protein-coding genes with an average size of 825 bp, a single rRNA operon, and 40 tRNA genes. Together with the 1.66-Mbp genome of P. marinus MED4, the genome of P. marinus SS120 is one of the two smallest genomes of a photosynthetic organism known to date. It lacks many genes that are involved in photosynthesis, DNA repair, solute uptake, intermediary metabolism, motility, phototaxis, and other functions that are conserved among other cyanobacteria. Systems of signal transduction and environmental stress response show a particularly drastic reduction in the number of components, even taking into account the small size of the SS120 genome. In contrast, housekeeping genes, which encode enzymes of amino acid, nucleotide, cofactor, and cell wall biosynthesis, are all present. Because of its remarkable compactness, the genome of P. marinus SS120 might approximate the minimal gene complement of a photosynthetic organism.


Microbiology and Molecular Biology Reviews | 2011

cis-Antisense RNA, Another Level of Gene Regulation in Bacteria

Jens Georg; Wolfgang R. Hess

SUMMARY A substantial amount of antisense transcription is a hallmark of gene expression in eukaryotes. However, antisense transcription was first demonstrated in bacteria almost 50 years ago. The transcriptomes of bacteria as different as Helicobacter pylori, Bacillus subtilis, Escherichia coli, Synechocystis sp. strain PCC6803, Mycoplasma pneumoniae, Sinorhizobium meliloti, Geobacter sulfurreducens, Vibrio cholerae, Chlamydia trachomatis, Pseudomonas syringae, and Staphylococcus aureus have now been reported to contain antisense RNA (asRNA) transcripts for a high percentage of genes. Bacterial asRNAs share functional similarities with trans-acting regulatory RNAs, but in addition, they use their own distinct mechanisms. Among their confirmed functional roles are transcription termination, codegradation, control of translation, transcriptional interference, and enhanced stability of their respective target transcripts. Here, we review recent publications indicating that asRNAs occur as frequently in simple unicellular bacteria as they do in higher organisms, and we provide a comprehensive overview of the experimentally confirmed characteristics of asRNA actions and intimately linked quantitative aspects. Emerging functional data suggest that asRNAs in bacteria mediate a plethora of effects and are involved in far more processes than were previously anticipated. Thus, the functional impact of asRNAs should be considered when developing new strategies against pathogenic bacteria and when optimizing bacterial strains for biotechnology.


Proceedings of the National Academy of Sciences of the United States of America | 2011

An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803

Jan Mitschke; Jens Georg; Ingeborg Scholz; Cynthia M. Sharma; Dennis Dienst; J. Bantscheff; Björn Voss; Claudia Steglich; Annegret Wilde; Jörg Vogel; Wolfgang R. Hess

There has been an increasing interest in cyanobacteria because these photosynthetic organisms convert solar energy into biomass and because of their potential for the production of biofuels. However, the exploitation of cyanobacteria for bioengineering requires knowledge of their transcriptional organization. Using differential RNA sequencing, we have established a genome-wide map of 3,527 transcriptional start sites (TSS) of the model organism Synechocystis sp. PCC6803. One-third of all TSS were located upstream of an annotated gene; another third were on the reverse complementary strand of 866 genes, suggesting massive antisense transcription. Orphan TSS located in intergenic regions led us to predict 314 noncoding RNAs (ncRNAs). Complementary microarray-based RNA profiling verified a high number of noncoding transcripts and identified strong ncRNA regulations. Thus, ∼64% of all TSS give rise to antisense or ncRNAs in a genome that is to 87% protein coding. Our data enhance the information on promoters by a factor of 40, suggest the existence of additional small peptide-encoding mRNAs, and provide corrected 5′ annotations for many genes of this cyanobacterium. The global TSS map will facilitate the use of Synechocystis sp. PCC6803 as a model organism for further research on photosynthesis and energy research.


Molecular Systems Biology | 2009

Evidence for a major role of antisense RNAs in cyanobacterial gene regulation

Jens Georg; Björn Voß; Ingeborg Scholz; Jan Mitschke; Annegret Wilde; Wolfgang R. Hess

Information on the numbers and functions of naturally occurring antisense RNAs (asRNAs) in eubacteria has thus far remained incomplete. Here, we screened the model cyanobacterium Synechocystis sp. PCC 6803 for asRNAs using four different methods. In the final data set, the number of known noncoding RNAs rose from 6 earlier identified to 60 and of asRNAs from 1 to 73 (28 were verified using at least three methods). Among these, there are many asRNAs to housekeeping, regulatory or metabolic genes, as well as to genes encoding electron transport proteins. Transferring cultures to high light, carbon‐limited conditions or darkness influenced the expression levels of several asRNAs, suggesting their functional relevance. Examples include the asRNA to rpl1, which accumulates in a light‐dependent manner and may be required for processing the L11 r‐operon and the SyR7 noncoding RNA, which is antisense to the murF 5′ UTR, possibly modulating murein biosynthesis. Extrapolated to the whole genome, ∼10% of all genes in Synechocystis are influenced by asRNAs. Thus, chromosomally encoded asRNAs may have an important function in eubacterial regulatory networks.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC7120

Jan Mitschke; Agustín Vioque; Fabian Haas; Wolfgang R. Hess; Alicia M. Muro-Pastor

The fixation of atmospheric N2 by cyanobacteria is a major source of nitrogen in the biosphere. In Nostocales, such as Anabaena, this process is spatially separated from oxygenic photosynthesis and occurs in heterocysts. Upon nitrogen step-down, these specialized cells differentiate from vegetative cells in a process controlled by two major regulators: NtcA and HetR. However, the regulon controlled by these two factors is only partially defined, and several aspects of the differentiation process have remained enigmatic. Using differential RNA-seq, we experimentally define a genome-wide map of >10,000 transcriptional start sites (TSS) of Anabaena sp. PCC7120, a model organism for the study of prokaryotic cell differentiation and N2 fixation. By analyzing the adaptation to nitrogen stress, our global TSS map provides insight into the dynamic changes that modify the transcriptional organization at a critical step of the differentiation process. We identify >900 TSS with minimum fold change in response to nitrogen deficiency of eight. From these TSS, at least 209 were under control of HetR, whereas at least 158 other TSS were potentially directly controlled by NtcA. Our analysis of the promoters activated during the switch to N2 fixation adds hundreds of protein-coding genes and noncoding transcripts to the list of potentially involved factors. These data experimentally define the NtcA regulon and the DIF+ motif, a palindrome at or close to position −35 that seems essential for heterocyst-specific expression of certain genes.


Nucleic Acids Research | 2014

CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains

Patrick R. Wright; Jens Georg; Martin Mann; Dragoş Alexandru Sorescu; Andreas S. Richter; Steffen C. Lott; Robert Kleinkauf; Wolfgang R. Hess; Rolf Backofen

CopraRNA (Comparative prediction algorithm for small RNA targets) is the most recent asset to the Freiburg RNA Tools webserver. It incorporates and extends the functionality of the existing tool IntaRNA (Interacting RNAs) in order to predict targets, interaction domains and consequently the regulatory networks of bacterial small RNA molecules. The CopraRNA prediction results are accompanied by extensive postprocessing methods such as functional enrichment analysis and visualization of interacting regions. Here, we introduce the functionality of the CopraRNA and IntaRNA webservers and give detailed explanations on their postprocessing functionalities. Both tools are freely accessible at http://rna.informatik.uni-freiburg.de.


BMC Plant Biology | 2007

Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution

Isam Fattash; Björn Voß; Ralf Reski; Wolfgang R. Hess; Wolfgang Frank

BackgroundMicroRNAs (miRNAs) are regulatory RNA molecules that are specified by their mode of action, the structure of primary transcripts, and their typical size of 20–24 nucleotides. Frequently, not only single miRNAs but whole families of closely related miRNAs have been found in animals and plants. Some families are widely conserved among different plant taxa. Hence, it is evident that these conserved miRNAs are of ancient origin and indicate essential functions that have been preserved over long evolutionary time scales. In contrast, other miRNAs seem to be species-specific and consequently must possess very distinct functions. Thus, the analysis of an early-branching species provides a window into the early evolution of fundamental regulatory processes in plants.ResultsBased on a combined experimental-computational approach, we report on the identification of 48 novel miRNAs and their putative targets in the moss Physcomitrella patens. From these, 18 miRNAs and two targets were verified in independent experiments. As a result of our study, the number of known miRNAs in Physcomitrella has been raised to 78. Functional assignments to mRNAs targeted by these miRNAs revealed a bias towards genes that are involved in regulation, cell wall biosynthesis and defense. Eight miRNAs were detected with different expression in protonema and gametophore tissue. The miRNAs 1–50 and 2–51 are located on a shared precursor that are separated by only one nucleotide and become processed in a tissue-specific way.ConclusionOur data provide evidence for a surprisingly diverse and complex miRNA population in Physcomitrella. Thus, the number and function of miRNAs must have significantly expanded during the evolution of early land plants. As we have described here within, the coupled maturation of two miRNAs from a shared precursor has not been previously identified in plants.

Collaboration


Dive into the Wolfgang R. Hess's collaboration.

Top Co-Authors

Avatar

Jens Georg

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Björn Voß

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Björn Voss

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge