Wolfgang Rabitsch
Environment Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wolfgang Rabitsch.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Petr Pyšek; Vojtěch Jarošík; Philip E. Hulme; Ingolf Kühn; Jan Wild; Margarita Arianoutsou; Sven Bacher; François Chiron; Viktoras Didžiulis; Franz Essl; Piero Genovesi; Francesca Gherardi; Martin Hejda; Salit Kark; Philip W. Lambdon; Marie Laure Desprez-Loustau; Wolfgang Nentwig; Jan Pergl; Katja Poboljšaj; Wolfgang Rabitsch; Alain Roques; David B. Roy; Susan Shirley; Wojciech Solarz; Montserrat Vilà; Marten Winter
The accelerating rates of international trade, travel, and transport in the latter half of the twentieth century have led to the progressive mixing of biota from across the world and the number of species introduced to new regions continues to increase. The importance of biogeographic, climatic, economic, and demographic factors as drivers of this trend is increasingly being realized but as yet there is no consensus regarding their relative importance. Whereas little may be done to mitigate the effects of geography and climate on invasions, a wider range of options may exist to moderate the impacts of economic and demographic drivers. Here we use the most recent data available from Europe to partition between macroecological, economic, and demographic variables the variation in alien species richness of bryophytes, fungi, vascular plants, terrestrial insects, aquatic invertebrates, fish, amphibians, reptiles, birds, and mammals. Only national wealth and human population density were statistically significant predictors in the majority of models when analyzed jointly with climate, geography, and land cover. The economic and demographic variables reflect the intensity of human activities and integrate the effect of factors that directly determine the outcome of invasion such as propagule pressure, pathways of introduction, eutrophication, and the intensity of anthropogenic disturbance. The strong influence of economic and demographic variables on the levels of invasion by alien species demonstrates that future solutions to the problem of biological invasions at a national scale lie in mitigating the negative environmental consequences of human activities that generate wealth and by promoting more sustainable population growth.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Franz Essl; Stefan Dullinger; Wolfgang Rabitsch; Philip E. Hulme; Karl Hülber; Vojt ech Jarošík; Ingrid Kleinbauer; Fridolin Krausmann; Ingolf Kühn; Wolfgang Nentwig; Montserrat Vilà; Piero Genovesi; Francesca Gherardi; Marie-Laure Desprez-Loustau; Alain Roques; Petr Pyšek
Globalization and economic growth are widely recognized as important drivers of biological invasions. Consequently, there is an increasing need for governments to address the role of international trade in their strategies to prevent species introductions. However, many of the most problematic alien species are not recent arrivals but were introduced several decades ago. Hence, current patterns of alien-species richness may better reflect historical rather than contemporary human activities, a phenomenon which might be called “invasion debt.” Here, we show that across 10 taxonomic groups (vascular plants, bryophytes, fungi, birds, mammals, reptiles, amphibians, fish, terrestrial insects, and aquatic invertebrates) in 28 European countries, current numbers of alien species established in the wild are indeed more closely related to indicators of socioeconomic activity from the year 1900 than to those from 2000, although the majority of species introductions occurred during the second half of the 20th century. The strength of the historical signal varies among taxonomic groups, with those possessing good capabilities for dispersal (birds, insects) more strongly associated with recent socioeconomic drivers. Nevertheless, our results suggest a considerable historical legacy for the majority of the taxa analyzed. The consequences of the current high levels of socioeconomic activity on the extent of biological invasions will thus probably not be completely realized until several decades into the future.
PLOS Biology | 2014
Tim M. Blackburn; Franz Essl; Thomas P. Oléron Evans; Philip E. Hulme; Jonathan M. Jeschke; Ingolf Kühn; Sabrina Kumschick; Zuzana Marková; Agata Mrugała; Wolfgang Nentwig; Jan Pergl; Petr Pyšek; Wolfgang Rabitsch; Anthony Ricciardi; Agnieszka Sendek; Montserrat Vilà; John R. U. Wilson; Marten Winter; Piero Genovesi; Sven Bacher
We present a method for categorising and comparing alien or invasive species in terms of how damaging they are to the environment, that can be applied across all taxa, scales, and impact metrics.
Biocontrol | 2008
Peter M. Brown; Tim Adriaens; H Bathon; J Cuppen; A Goldarazena; T Hägg; Marc Kenis; B. E. M Klausnitzer; I Kovar; Antoon Loomans; Michael E. N. Majerus; Oldrich Nedved; J Pedersen; Wolfgang Rabitsch; Helen E. Roy; V Ternois; Ilya A. Zakharov; David B. Roy
Native to Asia, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) is considered an invasive alien ladybird in Europe and North America, where it was widely introduced as a biological control agent of aphids and coccids. In Europe, H. axyridis was sold by various biological control companies from 1995 in France, Belgium and the Netherlands, and was also intentionally released in at least nine other countries. It has spread very rapidly, particularly since 2002, and is now regarded as established in thirteen European countries. The established range extends from Denmark in the north to southern France in the south, and from Czech Republic in the east to Great Britain in the west. In this paper we map the spread and distribution of H. axyridis in Europe, and examine the situation on a country-by-country basis. We report first records of the species in five countries; Spain, Sweden, Denmark, Czech Republic and Italy; and first evidence of H. axyridis establishment in the latter three countries. Despite releases of H. axyridis in Portugal, Spain and Greece, there is little evidence of establishment in southern Europe. It is predicted that the spread and increase within Europe will continue and that H. axyridis will become one of the most widely distributed coccinellids in the continent.
Archive | 2009
Alain Roques; Wolfgang Rabitsch; Jean-Yves Rasplus; Carlos Lopez-Vaamonde; Wolfgang Nentwig; Marc Kenis
Unlike other groups of animals and plants, no checklist of alien terrestrial invertebrates was available in any of the European countries until recently. Since 2002, such checklists were successively provided by Austria (Essl and Rabitsch 2002), Germany (Geiter et al. 2002), the Czech Republic (Sefrova and Lastu vka 2005), Scandinavia (NOBANIS 2007), the United Kingdom (Hill et al. 2005), Switzerland (Wittenberg 2006) and Israel (Roll et al. 2007). However, most European regions remained uncovered and, furthermore, comparisons between the existing lists were inherently difficult because they used different definitions of alien. Thus, estimating the importance of terrestrial alien invertebrates at the European level remained impossible, mostly because of poor taxonomic knowledge existed for several groups. By gathering taxonomists and ecologists specialised on most invertebrate taxa together with collaborators working at the national level in 35 European countries, the DAISIE project intended to fill this gap. However, a lack of European expertise in some taxonomic groups did not allow coverage of all the terrestrial invertebrates with the same level of precision. Data on insects were more reliable than those of other taxa, and consequently the analyses presented below will mostly refer to this group.
Conservation Biology | 2014
Jonathan M. Jeschke; Sven Bacher; Tim M. Blackburn; Jaimie T. A. Dick; Franz Essl; Thomas J. Evans; Mirijam Gaertner; Philip E. Hulme; Ingolf Kühn; Agata Mrugała; Jan Pergl; Petr Pyšek; Wolfgang Rabitsch; Anthony Ricciardi; Agnieszka Sendek; Montserrat Vilà; Marten Winter; Sabrina Kumschick
Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts. Definiendo el Impacto de las Especies No-Nativas Resumen Las especies no-nativas pueden causar cambios en los ecosistemas donde son introducidas. Estos cambios, o algunos de ellos, usualmente se denominan como impactos; estos pueden ser variados y potencialmente dañinos para los ecosistemas y la biodiversidad. Sin embargo, los impactos de la mayoría de las especies no-nativas están pobremente entendidos y una síntesis de información disponible se ve obstaculizada porque los autores continuamente no definen claramente impacto. Discutimos que definir explícitamente el impacto de las especies no-nativas promoverá el progreso hacia un mejor entendimiento de las implicaciones de los cambios a la biodiversidad y los ecosistemas causados por especies no-nativas; ayudar a entender cuáles aspectos de los debates científicos sobre especies no-nativas son debidos a definiciones diversas y cuáles representan un verdadero desacuerdo científico; y mejorar la comunicación entre científicos de diferentes disciplinas y entre científicos, administradores y quienes hacen las políticas. Por estas razones y basándonos en ejemplos tomados de la literatura, concebimos siete preguntas clave que caen en cuatro categorías: direccionalidad, clasificación y medida, cambios ecológicos o socio-económicos, y escala. Estas preguntas deberían ayudar en la formulación de definiciones claras y prácticas del impacto para encajar mejor con contextos científicos, de las partes interesadas o legislativos específicos.
Nature Communications | 2017
Hanno Seebens; Tim M. Blackburn; Ellie E. Dyer; Piero Genovesi; Philip E. Hulme; Jonathan M. Jeschke; Shyama Pagad; Petr Pyšek; Marten Winter; Margarita Arianoutsou; Sven Bacher; Bernd Blasius; Giuseppe Brundu; César Capinha; Laura Celesti-Grapow; Wayne Dawson; Stefan Dullinger; Nicol Fuentes; Heinke Jäger; John Kartesz; Marc Kenis; Holger Kreft; Ingolf Kühn; Bernd Lenzner; Andrew M. Liebhold; Alexander Mosena; Dietmar Moser; Misako Nishino; David A. Pearman; Jan Pergl
Although research on human-mediated exchanges of species has substantially intensified during the last centuries, we know surprisingly little about temporal dynamics of alien species accumulations across regions and taxa. Using a novel database of 45,813 first records of 16,926 established alien species, we show that the annual rate of first records worldwide has increased during the last 200 years, with 37% of all first records reported most recently (1970–2014). Inter-continental and inter-taxonomic variation can be largely attributed to the diaspora of European settlers in the nineteenth century and to the acceleration in trade in the twentieth century. For all taxonomic groups, the increase in numbers of alien species does not show any sign of saturation and most taxa even show increases in the rate of first records over time. This highlights that past efforts to mitigate invasions have not been effective enough to keep up with increasing globalization.
Environmental Pollution | 1995
Wolfgang Rabitsch
This study reports on accumulation of lead, cadmium, copper and zinc in soil, plants and arthropod species in the vicinity of a closed-down lead/zinc smelter with a long history of pollution in Arnoldstein, Austria. Significant site-dependent metal accumulations were measured in most species, increasing in line with site contamination. Within a site, clear species-specific differences were found, even between closely related species. Within some species, developmental-, sex- and/or seasonal-specificities occurred, reflecting individual metal budgeting capabilities. Evidence for copper regulatory mechanisms appeared to be established in most cases, whereas lead, the main pollutant of the region, became heavily accumulated in some organisms. Higher levels of lead than previously reported in field surveys were detected in Carabidae and Caelifera at the most polluted site. It is recommended to take ecological and physiological parameters of species into consideration in interpreting field data on arthropod metal accumulation.
Biological Invasions | 2016
Helen E. Roy; Peter M. Brown; Tim Adriaens; Nick Berkvens; Isabel Borges; Susana Clusella-Trullas; Richard F. Comont; Patrick De Clercq; René Eschen; Arnaud Estoup; Edward W. Evans; Benoit Facon; Mary M. Gardiner; Artur Gil; Audrey A. Grez; Thomas Guillemaud; Danny Haelewaters; Annette Herz; Alois Honek; Andy G. Howe; Cang Hui; W. D. Hutchison; Marc Kenis; Robert L. Koch; Ján Kulfan; Lori Lawson Handley; Eric Lombaert; Antoon Loomans; John E. Losey; Alexander Ok Lukashuk
The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is native to Asia but has been intentionally introduced to many countries as a biological control agent of pest insects. In numerous countries, however, it has been introduced unintentionally. The dramatic spread of H. axyridis within many countries has been met with considerable trepidation. It is a generalist top predator, able to thrive in many habitats and across wide climatic conditions. It poses a threat to biodiversity, particularly aphidophagous insects, through competition and predation, and in many countries adverse effects have been reported on other species, particularly coccinellids. However, the patterns are not consistent around the world and seem to be affected by many factors including landscape and climate. Research on H. axyridis has provided detailed insights into invasion biology from broad patterns and processes to approaches in surveillance and monitoring. An impressive number of studies on this alien species have provided mechanistic evidence alongside models explaining large-scale patterns and processes. The involvement of citizens in monitoring this species in a number of countries around the world is inspiring and has provided data on scales that would be otherwise unachievable. Harmonia axyridis has successfully been used as a model invasive alien species and has been the inspiration for global collaborations at various scales. There is considerable scope to expand the research and associated collaborations, particularly to increase the breadth of parallel studies conducted in the native and invaded regions. Indeed a qualitative comparison of biological traits across the native and invaded range suggests that there are differences which ultimately could influence the population dynamics of this invader. Here we provide an overview of the invasion history and ecology of H. axyridis globally with consideration of future research perspectives. We reflect broadly on the contributions of such research to our understanding of invasion biology while also informing policy and people.
Biological Invasions | 2006
Wolfgang Rabitsch; Franz Essl
This paper provides a review of the first national inventory of non-indigenous species in Austria. In summary, 1110 vascular plant species (27 of the entire flora), 83 mycetes and at least 500 animal species (approximately 1 of the entire fauna) were documented for Austria, which are introduced intentionally or unintentionally by humans after 1492 and reported from the wild. About 25 of non-indigenous vascular plant species have become naturalized. Most non-indigenous vascular plants are native to the Palaearctic region (55%; with 33% originating from the Mediterranean subregion) and North America (20%). More than 90% of non-indigenous plant species are confined to naturally and anthropogenically disturbed (ruderal, urban, arable land, and riverine) habitats. Aquatic ecosystems are more affected and vulnerable to changes in their animal species composition. The current data demonstrate that non-indigenous species continue to invade and disperse and it also emphasize the necessity and responsibility to develop scientific strategies to minimize the impact of biological invasions and to raise public awareness of the problem.
Collaboration
Dive into the Wolfgang Rabitsch's collaboration.
International Union for Conservation of Nature and Natural Resources
View shared research outputs