Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfgang Reimann is active.

Publication


Featured researches published by Wolfgang Reimann.


Biochemical Pharmacology | 1994

Inhibition of spinal noradrenaline uptake in rats by the centrally acting analgesic tramadol

Wolfgang Reimann; Hagen-Heinrich Hennies

Tramadol is a centrally acting analgesic with low affinity to opioid receptors. A further mode of action is inhibition of noradrenaline uptake as measured in standard assays. Since tramadol shows antinociception at the spinal site, it was to be tested whether uptake blockade could be verified in spinal tissue. Therefore, synaptosomes and slices had to be prepared from the dorsal half of the spinal cord and the uptake of [3H]noradrenaline into synaptosomes to be characterized. The uptake was linear for at least 3 min. The apparent Km was 0.16 microM and Vmax was 7.9 pmol/min/mg protein. Tramadol inhibited the uptake competitively as analysed with Dixon plots with a Ki of 0.6 microM. Uptake inhibition was effected in order of potency by (+)-oxaprotiline > nisoxetine > (-)-tramadol > (-)-oxaprotiline = tramadol > (+)-tramadol. Slices were preincubated with [3H]noradrenaline then superfused and stimulated electrically. Nisoxetine, tramadol and its (-)-enantiomer enhanced mainly the stimulation-evoked overflow indicating uptake inhibition without releasing effects. Experiments with inclusion of the noradrenaline uptake inhibitor desipramine provided evidence that tramadol interfered with the noradrenaline transporter. The results show that spinal synaptosomes and slices are valid preparations to study local noradrenaline uptake and release. Tramadol enhances extraneuronal noradrenaline levels in the spinal cord by competitive interference with the noradrenaline uptake mechanism.


Naunyn-schmiedebergs Archives of Pharmacology | 1994

Spinal antinociception by morphine in rats is antagonised by galanin receptor antagonists

Wolfgang Reimann; Werner Englberger; Elmar Friderichs; Norma Selve; Bob Wilffert

Galanin, a 29 amino acid peptide, has been reported to possess antinociceptive properties at the spinal site and to potentiate opioid-induced antinociception. Our aim was to investigate whether also endogenous galanin interacts with an exogenously administered opioid, morphine, in the rat spinal cord. This question was investigated by use of the recently developed galanin receptor antagonists galantide [M-15, galanin(1–13)-substance P-(5 -11) amide] and M-35 [galanin-(1–13)-bradykinin-(2–9) amide].Nociception was assessed in the rat tail-flick test using radiant heat and the rat Randall-Selitto model of inflammatory pain using vocalization as the nociceptive criterion. Intrathecal (i.t.) injections were performed in rats under ether anaesthesia. Morphine was administered either i.t. or intraperitoneally (i.p.), and the antagonists were injected i.t. [125I]Galanin binding experiments were performed on crude synaptosomal membranes of the rat spinal cord.In the rat tail-flick test, i.t. injection of 3 μg morphine evoked antinociception of about 75% of the maximal possible effect (% MPE). Co-injection of either 2 μg galantide or 2 μg M-35 with morphine almost completely abolished the antinociceptive effect of morphine. I.p. injection of 2.15 mg/kg morphine elicited about 80% MPE when given 10 min prior to i.t. saline injection. Injection of the antagonists instead of saline antagonised the antinociceptive effect of morphine partially thus showing the spinal proportion of the overall antinociceptive effect. In the rat Randall-Selitto test, 3 μg morphine, injected i.t., produced antinociception of almost 100% MPE. Coinjection of the antagonists reduced the maximum effect partially by about 25–35%. I.p. injection of 7.5 mg/kg morphine 10 min prior to Lt. injection of saline elicited an antinociceptive effect of 90–100% MPE; injection of the antagonists instead of saline reduced the peak effect to a similar degree as after i.t. injection of 3 μg morphine. To exclude a direct interference by morphine with the galanin receptor, in vitro binding of [125I]galanin to a spinal synaptosomal fraction was assessed. Morphine, 10 μM, did not interfere with the specific [125I]galanin binding. These results provide further evidence that galanin is involved in spinal nociceptive processing. It seems to be involved in the mediation of the effects of morphine at this site, either as a co-transmitter, or subsequent to µ-receptor activation on nerve terminals or on interneurones.


Anesthesia & Analgesia | 1999

The antinociceptive effects of morphine, desipramine, and serotonin and their combinations after intrathecal injection in the rat

Wolfgang Reimann; Harald Schlütz; Norma Selve

UNLABELLED Antinociception can be produced at the spinal level by activation of opioidergic, noradrenergic, and serotonergic systems. We tested the antinociceptive effects of combined activation of all three systems. Antinociception was assessed in the rat tail-flick test, and drugs were administered via an intrathecal catheter. Morphine, the norepinephrine uptake inhibitor desipramine, and serotonin produced antinociception of their own. The combination of subthreshold doses of morphine 1 microg and of desipramine 3 microg produced pronounced antinociception that was antagonized by yohimbine. The combination of subthreshold morphine with serotonin 50 microg or desipramine with serotonin caused only small antinociceptive effects. When morphine combined with desipramine was decreased to a subthreshold dose, we observed pronounced antinociception when a subthreshold dose of serotonin was added. A complex interaction can be supposed by results obtained with antagonists. The activation of all three neurotransmitter systems with small doses of agonists may represent an effective principle for pain control at the spinal level. IMPLICATIONS Pain sensations are modulated at the spinal level by opioids, noradrenergic drugs, and serotonin. Using a rat model, we showed that the concurrent use of drugs from each of these classes produces good pain control at doses that should avoid the side effects associated with larger doses of each individual drug.


Brain Research | 1996

Galanin receptor antagonists attenuate spinal antinociceptive effects of DAMGO, tramadol and non-opioid drugs in rats

Norma Selve; Werner Englberger; Elmar Friderichs; Hagen-Heinrich Hennies; Wolfgang Reimann; Bob Wilffert

The involvement of endogenous galanin to antinociception elicited by intrathecally (i.t.) or systemically administered drugs from different chemical and therapeutic classes was investigated using the rat Randall-Selitto or the rat tail-flick test, in the absence or presence of the i.t. administered galanin receptor antagonists galantide and M-35. Antinociception elicited by i.t. tramadol (24 micrograms), DAMGO (1 microgram), clonidine (48 micrograms), desipramine (6 micrograms) or fenfluramine (60 micrograms) was attenuated by i.t. galantide (2 micrograms); the attenuation reached significance at least at one time point. A partial antagonism by i.t. galantide was also observed against the antinociception of i.p. tramadol (10 mg/kg), i.v. clonidine (1 mg/kg), i.p. desipramine (1 mg/kg), or i.p. dipyrone (1000 mg/kg), but antinociception by i.p. fenfluramine (30 mg/kg) was not affected. Using M-35 (2 micrograms i.t.), the antinociception of i.t. tramadol or DAMGO was attenuated, but no inhibition was observed when clonidine, desipramine or fenfluramine were used i.t. If drugs were administered systemically, only antinociception of i.p. fenfluramine but not that of i.p. tramadol, or i.v. clonidine, or i.p. desipramine or i.p dipyrone was attenuated. In the rat tail flick test, co-injection of either 2 micrograms i.t. galantide or M-35 with i.t. tramadol (12 micrograms) almost abolished the antinociceptive effect, whereas the antinociception of systemically administered tramadol (4.6 mg/kg i.p.) was only partially attenuated by i.t. galantide and not affected by i.t. M-35. Binding studies in dorsal spinal cord tissue showed no affinity of galantide or M-35 to spinal mu-, or delta-, or kappa-opioid receptors and none of the other drugs interfered with the spinal galanin binding site. These data give further support of at least a partial galanin link in spinal processes of antinociception.


Life Sciences | 1993

Galanin receptor activation attenuates norepinephrine release from rat spinal cord slices.

Wolfgang Reimann; Frank Schneider

Galanin and norepinephrine both act on sensory neurons in the rat spinal cord dorsal horn. We looked for the effects of galanin on the basal and electrically-evoked release of [3H]norepinephrine from slices of the dorsal spinal cord. 0.1 to 1.0 microM reduced the basal efflux by maximal 10% and the stimulation-evoked release in a concentration-related manner by maximal 27%. In the presence of 0.1 microM galanin receptor antagonist (M-15) reduction of basal efflux persisted but significant effects on the stimulation-evoked release were no longer observed. The antagonist, given alone, was without effect on the release. Thus galanin can reduce the stimulation-evoked norepinephrine release from spinal cord dorsal horn nerve terminals by an action on galanin receptors, however, the release seems not to be tonically inhibited by galanin.


European Journal of Pharmacology | 1994

Absence of emetic effects of morphine and loperamide in Suncus murinus

Norma Selve; Elmar Friderichs; Wolfgang Reimann; Silvia Reinartz

The house musk shrew Suncus murinus recently has been introduced for the study of emesis. We investigated the emetic effects of the opioids morphine (0.1-21.5 mg/kg i.p.) and loperamide (0.01-10 mg/kg i.p.) and found a complete lack of emetogenic potential. Nicotine, however, dose dependently induced vomiting in the Suncus with an ED50 of 8.8 mg/kg s.c. and a 100% incidence at 20 mg/kg. This drug-induced vomiting was reduced by morphine or loperamide: ED50 values obtained were 1.2 mg/kg i.p. for morphine and 0.7 mg/kg i.p. for loperamide. Naloxone (2 mg/kg s.c.) antagonised the inhibitory effect of morphine (2 mg/kg i.p.) or loperamide (10 mg/kg i.p.). Serotonin (20 mg/kg s.c.) had less reliable emetogenic potency than nicotine in the Suncus with incidences between 50 and 100%. However, the serotonin-induced vomiting was abolished by morphine and loperamide and this inhibition was antagonised by naloxone. These results suggest that systemically administered opioids are pure antiemetics in Suncus murinus in contrast to other animal models and man. Naloxone antagonism indicates that this antiemetic effect is mediated by opioid receptors.


General Pharmacology-the Vascular System | 1993

The serotonin receptor agonist 5-methoxy-N,N-dimethyltryptamine facilitates noradrenaline release from rat spinal cord slices and inhibits monoamine oxidase activity

Wolfgang Reimann; Frank Schneider

1. The influences of the purported serotonergic agonist 5-methoxy-N,N-dimethyltryptamine (MeODMT) on noradrenaline release and metabolism were investigated in a rat spinal cord release model and a monoamine oxidase (MAO) assay. 2. MeODMT inhibited the basal outflow of tritium from rat spinal cord slices preincubated with [3H]noradrenaline and enhanced the electrically-evoked overflow. 3. Effects on basal outflow were not observed, when monoamine oxidase (MAO) was inhibited by pargyline. Effects on the evoked overflow were not observed in the presence of metitepine or phentolamine. 4. Preferential inhibition by MeODMT of MAO A-type enzyme activity was found in a direct assay. 5. The results provide evidence for two different effects by which MeODMT reinforces noradrenergic neurotransmission in the rat spinal cord: facilitation of stimulation-evoked noradrenaline release and inhibition of noradrenaline metabolism by MAO inhibition.


European Journal of Pharmacology | 1989

Presynaptic α2-adrenoceptors modulate the release of [3H]noradrenaline from rat spinal cord dorsal horn neurones

Wolfgang Reimann; Frank Schneider

Slices of the dorsal half of the rat spinal cord were used to investigate the existence of a noradrenergic feedback modulation of noradrenaline release. After crude preparation of the vertebral column, the spinal cord was ejected by hydraulic pressure and transverse slices were cut. These were preincubated with [3H]noradrenaline during 0.1 Hz electrical stimulation and then superfused and stimulated electrically for two periods. The stimulation-evoked release of [3H]noradrenaline was Ca2+-dependent and tetrodotoxin-sensitive. Pretreatment of the animals with the noradrenergic neurotoxin, DSP-4, reduced the tritium content in the slices and the stimulation-evoked release to less than 10% of the controls. Clonidine (0.01-1 microM) inhibited the evoked overflow by 60% maximally and yohimbine (0.1-1 microM) enhanced it by 160% maximally. The effects of clonidine were antagonized by yohimbine. These results provide evidence that noradrenaline release from spinal cord slices is controlled by an alpha 2-adrenoceptor-mediated, negative feedback mechanism.


Inflammation Research | 1991

Analgesic and antitussive properties of EM 405

Werner Englberger; Elmar Friderichs; Wolfgang Reimann; Johannes Schneider

EM 405 [l-p-chlorbenzyl-2-dimethyl-amino-methylcyclohexen-l,2] is a new compound with antioedematic activity in acute and chronic inflammation models [1]. The compound has no influence on arachidonic acid metabolism and differs in various aspects from the antiinflammatory action profile of non-steroidal antiinflammatory drugs. Here we report on its antitussive and analgesic properties, the latter being of potential benefit in states of acute and chronic inflammation.


Journal of Pharmacology and Experimental Therapeutics | 1992

Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an 'atypical' opioid analgesic.

Robert B. Raffa; Elmar Friderichs; Wolfgang Reimann; Richard P. Shank; Ellen E. Codd; Jeffry L. Vaught

Collaboration


Dive into the Wolfgang Reimann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge