Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfgang Schüler is active.

Publication


Featured researches published by Wolfgang Schüler.


PLOS ONE | 2014

Design and development of a novel vaccine for protection against Lyme borreliosis.

Pär Comstedt; Markus Hanner; Wolfgang Schüler; Andreas Meinke; Urban Lundberg

There is currently no Lyme borreliosis vaccine available for humans, although it has been shown that the disease can be prevented by immunization with an OspA-based vaccine (LYMErix). Outer surface protein A (OspA) is one of the dominant antigens expressed by the spirochetes when present in a tick. The Borrelia species causing Lyme borreliosis in Europe express different OspA serotypes on their surface, B. burgdorferi (serotype 1), B. afzelii (serotype 2), B. garinii (serotypes, 3, 5 and 6) and B. bavariensis (serotype 4), while only B. burgdorferi is present in the US. In order to target all these pathogenic Borrelia species, we have designed a multivalent OspA-based vaccine. The vaccine includes three proteins, each containing the C-terminal half of two OspA serotypes linked to form a heterodimer. In order to stabilize the C-terminal fragment and thus preserve important structural epitopes at physiological temperature, disulfide bonds were introduced. The immunogenicity was increased by introduction of a lipidation signal which ensures the addition of an N-terminal lipid moiety. Three immunizations with 3.0 µg adjuvanted vaccine protected mice from a challenge with spirochetes expressing either OspA serotype 1, 2 or 5. Mice were protected against both challenge with infected ticks and in vitro grown spirochetes. Immunological analyses (ELISA, surface binding and growth inhibition) indicated that the vaccine can provide protection against the majority of Borrelia species pathogenic for humans. This article presents the approach which allows for the generation of a hexavalent vaccine that can potentially protect against a broad range of globally distributed Borrelia species causing Lyme borreliosis.


PLOS ONE | 2013

Comprehensive Antigen Screening Identifies Moraxella catarrhalis Proteins That Induce Protection in a Mouse Pulmonary Clearance Model

Margarita Smidt; Patrick Bättig; Suzanne J. C. Verhaegh; Axel Niebisch; Markus Hanner; Sanja Selak; Wolfgang Schüler; Eva Morfeldt; Christel Hellberg; Eszter Nagy; Urban Lundberg; John P. Hays; Andreas Meinke; Birgitta Henriques-Normark

Moraxella catarrhalis is one of the three most common causative bacterial pathogens of otitis media, however no effective vaccine against M. catarrhalis has been developed so far. To identify M. catarrhalis vaccine candidate antigens, we used carefully selected sera from children with otitis media and healthy individuals to screen small-fragment genomic libraries that are expressed to display frame-selected peptides on a bacterial cell surface. This ANTIGENome technology led to the identification of 214 antigens, 23 of which were selected by in vitro or in vivo studies for additional characterization. Eight of the 23 candidates were tested in a Moraxella mouse pulmonary clearance model, and 3 of these antigens induced significantly faster bacterial clearance compared to adjuvant or to the previously characterized antigen OmpCD. The most significant protection data were obtained with the antigen MCR_1416 (Msp22), which was further investigated for its biological function by in vitro studies suggesting that Msp22 is a heme binding protein. This study comprises one of the most exhaustive studies to identify potential vaccine candidate antigens against the bacterial pathogen M. catarrhalis.


Proteomics | 2012

Comparative membrane proteome analysis of three Borrelia species.

Bernd Gesslbauer; Albina Poljak; Claudia Handwerker; Wolfgang Schüler; Daniel Schwendenwein; Corinna Weber; Urban Lundberg; Andreas Meinke

The versatility of the surface of Borrelia, the causative agent of Lyme borreliosis, is very important in host–pathogen interactions allowing bacteria to survive in ticks and to persist in a mammalian environment. To identify the surface proteome of Borrelia, we have performed a large comparative proteomic analysis on the three most important pathogenic Borrelia species, namely B. burgdorferi (strain B31), B. afzelii (strain K78), and B. garinii (strain PBi). Isolation of membrane proteins was performed by using three different approaches: (i) a detergent‐based fractionation of outer membrane proteins; (ii) a trypsin‐based partial shedding of outer cell surface proteins; (iii) biotinylation of membrane proteins and preparation of the biotin‐labelled fraction using streptavidin. Proteins derived from the detergent‐based fractionation were further sub‐fractionated by heparin affinity chromatography since heparin‐like molecules play an important role for microbial entry into human cells. All isolated proteins were analysed using either a gel‐based liquid chromatography (LC)‐MS/MS technique or by two‐dimensional (2D)‐LC‐MS/MS resulting in the identification of 286 unique proteins. Ninety seven of these were found in all three Borrelia species, representing potential targets for a broad coverage vaccine for the prevention of Lyme borreliosis caused by the different Borrelia species.


Vaccine | 2010

Immunological fingerprinting of group B streptococci: from circulating human antibodies to protective antigens.

Andreas Meinke; Beatrice Senn; Zehra Visram; Tamás Henics; Duc Bui Minh; Wolfgang Schüler; Christina Neubauer; Dieter Gelbmann; Birgit Noiges; Jan Sinzinger; Markus Hanner; Shailesh Dewasthaly; Urban Lundberg; Knut Hordnes; Helga Masoud; Paul Sevelda; Alexander von Gabain; Eszter Nagy

Group B streptococcus is one of the most important pathogens in neonates, and causes invasive infections in non-pregnant adults with underlying diseases. Applying a genomic approach that relies on human antibodies we identified antigenic GBS proteins, among them most of the previously published protective antigens. In vitro analyses allowed the selection of conserved candidate antigens that were further evaluated in murine lethal sepsis models using several GBS strains. In active and passive immunization models, we identified four protective GBS antigens, FbsA and BibA, as well as two hypothetical proteins, all shown to contribute to virulence based on gene deletion mutants. These protective antigens have the potential to be components of novel vaccines or targets for passive immune prophylaxis against GBS disease.


Vaccine | 2012

Identification and characterization of Borrelia antigens as potential vaccine candidates against Lyme borreliosis

Albina Poljak; Pär Comstedt; Markus Hanner; Wolfgang Schüler; Andreas Meinke; Benjamin Wizel; Urban Lundberg

The three Borrelia species, Borrelia afzelii, Borrelia burgdorferi and Borrelia garinii are the main species causing the most common tick-borne zoonosis, Lyme borreliosis. By applying a genomic approach relying on human antibodies we have identified 122 antigenic Borrelia proteins associated with Lyme borreliosis, including already known and published protective antigens. The heterogeneity of the Borrelia species causing Lyme borreliosis makes the search for conserved antigens providing broad protection challenging. Using several in vitro assays we narrowed down the selection to 15 vaccine candidates. These antigens were further analyzed for antigenicity and cross-reactivity using sera from mice infected with the three pathogenic Borrelia species. All antigens analyzed showed a high degree of cross-reactivity between the three Borrelia species, essential for providing cross-protection. We also investigated whether mice infected with B. afzelii through tick exposure are primed to mount cytokine responses. For a selection of these antigens, we observed preferentially a pro-inflammatory response in C3H/HeN mice, while in contrast also a type 2 T cell response was seen in the Borrelia-resistant mouse strain BALB/c. Thus, antigens mounting a type 2 or mixed type 2/type 1 T cell response might be preferred vaccine candidates for evaluation in animal models of Lyme borreliosis.


Human Vaccines & Immunotherapeutics | 2013

Identification and characterization of antigens as vaccine candidates against Klebsiella pneumoniae

Urban Lundberg; Beatrice Senn; Wolfgang Schüler; Andreas Meinke; Markus Hanner

Nosocomial infections, also called “hospital acquired infections,” occur worldwide and affect both developed and resource-poor countries, thus having a major impact on their health care systems. Klebsiella pneumoniae, which is an opportunistic Gram-negative pathogen, is responsible for causing pneumonia, urinary tract infections and septicemia in immune compromised hosts such as neonates. Unfortunately, there is no vaccine or mAb available for prophylactic or therapeutic use against K. pneumoniae infections. For this reason, we sought for a protein-based subunit vaccine capable of combating K. pneumoniae infections, by applying our ANTIGENome technology for the identification of potential vaccine candidates, focusing on conserved protein antigens present in strains with different serotypes. We identified numerous novel immunogenic proteins using genomic surface display libraries and human serum antibodies from donors exposed to or infected by K. pneumoniae. Vaccine candidate antigens were finally selected based on animal protection in a murine lethal-sepsis model. The protective and highly conserved antigens identified in this study are promising candidates for the development of a protein-based vaccine to prevent infection by K. pneumoniae.


PLOS ONE | 2015

Complete Genome Sequence of Borrelia afzelii K78 and Comparative Genome Analysis

Wolfgang Schüler; Ignas Bunikis; Pär Comstedt; Sabrina Kutschan-Bunikis; Gerold Stanek; Jutta Huber; Andreas Meinke; Sven Bergström; Urban Lundberg

The main Borrelia species causing Lyme borreliosis in Europe and Asia are Borrelia afzelii, B. garinii, B. burgdorferi and B. bavariensis. This is in contrast to the United States, where infections are exclusively caused by B. burgdorferi. Until to date the genome sequences of four B. afzelii strains, of which only two include the numerous plasmids, are available. In order to further assess the genetic diversity of B. afzelii, the most common species in Europe, responsible for the large variety of clinical manifestations of Lyme borreliosis, we have determined the full genome sequence of the B. afzelii strain K78, a clinical isolate from Austria. The K78 genome contains a linear chromosome (905,949 bp) and 13 plasmids (8 linear and 5 circular) together presenting 1,309 open reading frames of which 496 are located on plasmids. With the exception of lp28-8, all linear replicons in their full length including their telomeres have been sequenced. The comparison with the genomes of the four other B. afzelii strains, ACA-1, PKo, HLJ01 and Tom3107, as well as the one of B. burgdorferi strain B31, confirmed a high degree of conservation within the linear chromosome of B. afzelii, whereas plasmid encoded genes showed a much larger diversity. Since some plasmids present in B. burgdorferi are missing in the B. afzelii genomes, the corresponding virulence factors of B. burgdorferi are found in B. afzelii on other unrelated plasmids. In addition, we have identified a species specific region in the circular plasmid, cp26, which could be used for species determination. Different non-coding RNAs have been located on the B. afzelii K78 genome, which have not previously been annotated in any of the published Borrelia genomes.


Vaccine | 2015

Characterization and optimization of a novel vaccine for protection against Lyme borreliosis

Pär Comstedt; Markus Hanner; Wolfgang Schüler; Andreas Meinke; Robert Schlegl; Urban Lundberg

Lyme borreliosis (LB) is the most common vector-borne disease in the northern hemisphere and there is no vaccine available for disease prevention. The majority of LB cases in Europe are caused by four different Borrelia species expressing six different OspA serotypes, whereas in the US only one of these serotypes is present. Immunization with the outer surface protein A (OspA) can prevent infection and the C-terminal part of OspA is sufficient for protection against infection transmitted by Ixodes ticks. Here we show that the order of the stabilized monomeric OspA fragments making up the heterodimers in our LB vaccine does not influence the induced immunogenicity and protection. Using bioinformatics analysis (surface electrostatics), we have designed an improved version of an LB vaccine which has an increased immunogenicity for OspA serotype 3 and an optimized expression and purification profile. The OspA heterodimers were highly purified with low amounts of endotoxin, host cell proteins and host cell DNA. All three proteins were at least 85% triacylated which ensured high immunogenicity. The LB vaccine presented here was designed, produced and characterized to a level which warrants further development as a second generation human LB vaccine.


PLOS ONE | 2017

The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes

Pär Comstedt; Wolfgang Schüler; Andreas Meinke; Urban Lundberg; Brian Stevenson

We have previously shown that the Outer surface protein A (OspA) based Lyme borreliosis vaccine VLA15 induces protective immunity in mice. Herein, we report the induction of protective immunity by VLA15 with mouse models using ticks infected with B. burgdorferi (OspA serotype 1), B. afzelii (OspA serotype 2) and B. bavariensis (OspA serotype 4) or with in vitro grown B. garinii (OspA serotype 5 and 6) for challenge. For B. garinii (OspA serotype 3), we have developed a growth inhibition assay using chicken complement and functional antibodies targeting B. garinii (OspA serotype 3) could be demonstrated after immunization with VLA15. Furthermore, following three priming immunizations, a booster dose was administered five months later and the induction of immunological memory could be confirmed. Thus, the antibody titers after the booster dose were increased considerably compared to those after primary immunization. In addition, the half-lives of anti-OspA serotype specific antibodies after administration of the booster immunization were longer than after primary immunization. Taken together, we could show that VLA15 induced protection in mice against challenge with four different clinically relevant Borrelia species (B. burgdorferi, B. afzelii, B. garinii and B. bavariensis) expressing five of the six OspA serotypes included in the vaccine. The protection data is supported by functional assays showing efficacy against spirochetes expressing any of the six OspA serotypes (1 to 6). To our knowledge, this is the first time a Lyme borreliosis vaccine has been able to demonstrate such broad protection in preclinical studies. These new data provide further promise for the clinical development of VLA15 and supports our efforts to provide a new Lyme borreliosis vaccine available for global use.


Journal of Proteome Research | 2016

Profiling the Membrane and Glycosaminoglycan-Binding Proteomes of Moraxella catarrhalis

Anita Karner; Bernd Gesslbauer; Anton Spreitzer; Johannes Almer; Margarita Smidt; Wolfgang Schüler; Berthold Fartmann; Wolfgang Zimmermann; Andreas Meinke; Andreas Kungl

Moraxella catarrhalis, a Gram-negative bacterium, is an important respiratory pathogen causing acute otitis media and exacerbations of chronic obstructive pulmonary disease. Adhesion of the pathogen to human epithelial cells is mediated via bacterial membrane adhesin proteins. To identify the surface proteome of Moraxella catarrhalis, we applied different membrane protein extraction methods in combination with different proteomic technologies. Proteins from preparations of outer membrane vesicles and from carbonate extractions were analyzed using either a gel-based nano-HPLC-MS/MS technique or 2D-LC-MS/MS. Furthermore, because glycosaminoglycans (GAGs) play an important role for microbial entry into human cells, the GAG-binding membranome of Moraxella catarrhalis was investigated using a glycan-based pull-down approach. By these means, potential vaccine protein candidates that were previously selected by the ANTIGENome technology were confirmed, but importantly also novel proteins were identified as candidates.

Collaboration


Dive into the Wolfgang Schüler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge