Wolfgang Theis
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wolfgang Theis.
Nature Materials | 2015
Rui Xu; Chien Chun Chen; Li Wu; M. C. Scott; Wolfgang Theis; Colin Ophus; Matthias Bartels; Yongsoo Yang; Hadi Ramezani-Dakhel; Michael R. Sawaya; Hendrik Heinz; Laurence D. Marks; Peter Ercius; Jianwei Miao
Crystallography, the primary method for determining the 3D atomic positions in crystals, has been fundamental to the development of many fields of science. However, the atomic positions obtained from crystallography represent a global average of many unit cells in a crystal. Here, we report, for the first time, the determination of the 3D coordinates of thousands of individual atoms and a point defect in a material by electron tomography with a precision of ∼19 pm, where the crystallinity of the material is not assumed. From the coordinates of these individual atoms, we measure the atomic displacement field and the full strain tensor with a 3D resolution of ∼1 nm(3) and a precision of ∼10(-3), which are further verified by density functional theory calculations and molecular dynamics simulations. The ability to precisely localize the 3D coordinates of individual atoms in materials without assuming crystallinity is expected to find important applications in materials science, nanoscience, physics, chemistry and biology.
Nature | 2017
Yongsoo Yang; Chien Chun Chen; M. C. Scott; Colin Ophus; Rui Xu; Alan Pryor; Li Wu; Fan Sun; Wolfgang Theis; Jihan Zhou; Markus Eisenbach; Paul R. C. Kent; Renat Sabirianov; Hao Zeng; Peter Ercius; Jianwei Miao
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.
Scientific Data | 2016
Barnaby D. A. Levin; Elliot Padgett; Chien Chun Chen; M. C. Scott; Rui Xu; Wolfgang Theis; Yi Jiang; Yongsoo Yang; Colin Ophus; Haitao Zhang; Don Hyung Ha; Deli Wang; Yingchao Yu; Héctor D. Abruña; Richard D. Robinson; Peter Ercius; Lena F. Kourkoutis; Jianwei Miao; David A. Muller; Robert Hovden
Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.
Small | 2018
Rongsheng Cai; Peter Ellis; Jinlong Yin; Jian Liu; Christopher M. Brown; Ross Griffin; Guojing Chang; Dongjiang Yang; Jun Ren; Kevin Cooke; Peter Trenton Bishop; Wolfgang Theis; Richard E. Palmer
The deposition of preformed nanocluster beams onto suitable supports represents a new paradigm for the precise preparation of heterogeneous catalysts. The performance of the new materials must be validated in model catalytic reactions. It is shown that gold/copper (Au/Cu) nanoalloy clusters (nanoparticles) of variable composition, created by sputtering and gas phase condensation before deposition onto magnesium oxide powders, are highly active for the catalytic reduction of 4-nitrophenol in solution at room temperature. Au/Cu bimetallic clusters offer decreased catalyst cost compared with pure Au and the prospect of beneficial synergistic effects. Energy-dispersive X-ray spectroscopy coupled with aberration-corrected scanning transmission electron microscopy imaging confirms that the Au/Cu bimetallic clusters have an alloy structure with Au and Cu atoms randomly located. Reaction rate analysis shows that catalysts with approximately equal amounts of Au and Cu are much more active than Au-rich or Cu-rich clusters. Thus, the interplay between the Au and Cu atoms at the cluster surface appears to enhance the catalytic activity substantially, consistent with model density functional theory calculations of molecular binding energies. Moreover, the physically deposited clusters with Au/Cu ratio close to 1 show a 25-fold higher activity than an Au/Cu reference sample made by chemical impregnation.
Journal of Materials Chemistry | 2018
Lijie Zhang; Tongchao Liu; Ning Chen; Yi Alec Jia; Rongsheng Cai; Wolfgang Theis; Xianfeng Yang; Yanzhi Xia; Dongjiang Yang; Xiangdong Yao
Herein, a general strategy is developed to synthesize atomic metal catalysts using sustainable and earth-abundant sodium alginate (Na-Alg), a common seaweed extract, as a precursor. The “egg-box” structure in Na-Alg after ion-exchange with metal cations (Zn2+, Co2+, Ni2+, Cu2+, etc.) is the key to achieve a scalable and controllable synthesis of highly dispersed atomic metals. For instance, atomic Co, Ni and Cu have been successfully synthesized using this method. As a representative, the as-synthesized atomically dispersed Co on reduced graphene oxide (A-Co/r-GO) can reach a maximum metal loading of 3.6 wt%, showing outstanding catalytic activity and stability for the oxygen reduction reaction (ORR) with a half-wave potential (E1/2) of 0.842 V vs. RHE that is more positive than that of 20 wt% Pt/C (0.827 V vs. RHE) in alkaline solutions. The A-Co/r-GO catalyzed zinc-air batteries (ZABs) outperform Pt/C-based ZABs in the aspects of discharge voltage and specific zinc capacity, and can work robustly for more than 250 h with negligible voltage loss with refueling the Zn anode and KOH electrolyte periodically. This work opens up a new strategy for a general, practical and scalable synthesis of atomic metal catalysts at very low cost.
International Conference on Extreme Ultraviolet Lithography 2018 | 2018
Alex Philip Graham Robinson; Carmen Popescu; Alexandra McClelland; Guy Dawson; John Roth; Yannick Vesters; Dimitrios Kazazis; Yasin Ekinci; Wolfgang Theis; Danilo De Simone; Geert Vandenberghe
Recent tool and source advances make the introduction of EUV lithography into high volume manufacturing in the very near future inevitable. Whilst traditional chemically amplified resists will likely support the initial insertion, a wide range of materials options are being examined for future nodes, aiming to identify a photoresist that simultaneously meets the resolution, line edge roughness and sensitivity requirement. However, this issue represents a fundamental trade-off in lithography (the RLS triangle) and it is difficult to overcome. For instance, addition of quenchers in chemically amplified resists reduces the acid diffusion length and increases the resolution of the patterned features, but decreases the sensitivity, and impacts on material stochastics affecting the line edge roughness. In this study we present results obtained with Irresistible Materials’ Multi Trigger Resist. The multi trigger concept enables high sensitivity patterning but also incorporates a quenching behaviour into the chemistry to improve resolution. The standard material consists of a base molecule – EX2, a crosslinker and a PAG. EUV light generates photoacids, as with a traditional chemically amplified resist, but the response of the resist matrix implements a logic-type function. Where two resist molecules are activated by two acids, in close proximity to each other, then the resist molecules will react catalytically and release both acids. When a resist molecule encounters a single acid in isolation then it will hold on to the acid, without itself reacting, thus removing the acid from the reaction. This behaviour allows a high sensitivity response at a certain dose threshold but turns the resist response off much more quickly (as a 2nd order reaction) as the dose decreases, leading to sharper lines and lower line width roughness. We present results where the molecular structure was modified to create enhanced versions of the standard resin. This will offer higher cross-linking capability and better mechanical strength to reduce the LER, wiggling and defects, and thus ultimately higher resolution. We present the lithography performance of the MTR2 resist series which shows 16nm half pitch lines patterned with a dose of 38mJ/cm2, giving a LER of 3.7 nm when patterned using an NXE3300. We also present a new resist formulation using a crosslinker with a high opacity non-metallic atom attached, which has patterned 13nm lines at the Paul Scherrer Institute (14nm half pitch) and also 13nm lines on the MET tool at Berkeley (20nm half pitch) with an LER of 4.24nm. We also present the lithographic performance of the MTR3 resist series which is 10% faster than the MTR2 series when patterning with EUV lithography at PSI, and has achieved a 2.95nm LER at 16nm half pitch, and 3.80nm LER at 14nm half pitch at PSI. Performance across various process conditions is also discussed, including process conditions to reduce wiggling and improve LER.
Extreme Ultraviolet (EUV) Lithography IX | 2018
Alex P. G. Robinson; Yannick Vesters; Alexandra McClelland; Carmen Popescu; Guy Dawson; John Roth; Wolfgang Theis; Danilo De Simone; Geert Vandenberghe
Irresistible Materials (IM) is developing novel resist systems based on the multi-trigger concept, which incorporates a dose dependent quenching-like behaviour. The Multi Trigger Resist (MTR) is a negative tone crosslinking resist that does not need a post exposure bake (PEB), and during the past years, has been mainly tested using interference lithography at PSI. In this study, we present the results that have been obtained using MTR resists, performing EUV exposures on ASML NXE3300B EUV scanner at IMEC. We present the lithography performance of the MTR1 resist series in two formulations – a high-speed baseline, and a formulation designed to enhance the multi-trigger behaviour. Additionally, we present results for the MTR2 resist series, which has been designed for lower line edge roughness. The high-speed baseline resist (MTR1), showed 18 nm resolution at 20mJ/cm2. The MTR2 resist shows 16nm half pitch lines patterned with a dose of 38mJ/cm2, giving a LER of 3.7 nm. Performance across multiple process conditions are discussed. We performed etch rate measurement and the multi-trigger resist showed etch resistance equivalent or better than standard chemically amplified resist. This could compensate for the lower film thickness required to avoid pattern collapse at pitch 32nm.
Extreme Ultraviolet (EUV) Lithography IX | 2018
Alex P. G. Robinson; Carmen Popescu; Dimitrios Kazazis; Alexandra McClelland; Guy Dawson; John Roth; Wolfgang Theis; Yasin Ekinci
As minimum lithographic size continues to shrink, the development of techniques and resist materials capable of high resolution, high sensitivity and low line edge roughness (LER) have become increasingly important for next-generation lithography. In this study we present results where the behaviour of the resist is driven towards the multi-trigger regime by manipulating the resist formulation. We also present results obtained after enhancements of the base molecule to give high resolution, better LER, and a significant sensitivity enhancement of 40% over the standard material. Finally, we present the inclusion of non-metallic high-Z elements into the formulation to allow for a further reduction in LER at the same resolution and sensitivity as seen for the enhanced MTR molecule, indicating a direction for further improvements.
34th European Mask and Lithography Conference | 2018
Dimitrios Kazazis; Yasin Ekinci; Wolfgang Theis; Alex Philip Graham Robinson; Carmen Popescu; Alexandra McClelland; Guy Dawson; John Roth
The multi-trigger resist (MTR) is a new negative tone molecular resist platform for electron beam lithography, as well as extreme ultraviolet and optical lithography. The performance of xMT resist, the precursor to MTR resist, which shows a good combination of sensitivity, low line edge roughness and high-resolution patterning has previously been reported.[1] In order to overcome limitations induced by acid diffusion, a new mechanism - the multi-trigger concept - has been introduced. The results obtained so far as the behaviour of the resist is driven towards the multi-trigger regime by manipulating the resist formulation are presented. A feature size of 13 nm in semi-dense (1:1.5 line/space) patterns, and 22nm diameter pillar patterns are demonstrated in electron beam, and 16 nm half-pitch resolution patterns are demonstrated in (extreme ultraviolet) EUV. An improvement in the LER value is seen in the higher MTR formulations.
Microscopy and Microanalysis | 2017
Yongsoo Yang; Chien-Chun Chen; M. C. Scott; Colin Ophus; Rui Xu; Alan Pryor; Li Wu; Fan Sun; Wolfgang Theis; Jihan Zhou; Markus Eisenbach; Paul R. C. Kent; Renat Sabirianov; Hao Zeng; Peter Ercius; Jianwei Miao
1. Dept. of Physics and Astronomy and California NanoSystems Institute, UCLA, CA, USA. 2. Dept. of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan. 3. NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 4. Dept. of Physics, University at Buffalo, the State University of New York, Buffalo, NY, USA. 5. Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, UK. 6. National Center for Computational Sciences, ORNL, Oak Ridge, TN, USA. 7. Computer Science and Mathematics Division, ORNL, Oak Ridge, TN, USA. 8. Center for Nanophase Materials Sciences, ORNL, Oak Ridge, TN, USA. 9. Dept. of Physics, University of Nebraska at Omaha, Omaha, NE, USA.