Wolfgang Wernsdorfer
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wolfgang Wernsdorfer.
Nature Materials | 2008
Lapo Bogani; Wolfgang Wernsdorfer
A revolution in electronics is in view, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. A fundamental link between these two fields can be established using molecular magnetic materials and, in particular, single-molecule magnets. Here, we review the first progress in the resulting field, molecular spintronics, which will enable the manipulation of spin and charges in electronic devices containing one or more molecules. We discuss the advantages over more conventional materials, and the potential applications in information storage and processing. We also outline current challenges in the field, and propose convenient schemes to overcome them.
Nature | 2002
Wolfgang Wernsdorfer; N. Aliaga-Alcalde; David N. Hendrickson; George Christou
Various present and future specialized applications of magnets require monodisperse, small magnetic particles, and the discovery of molecules that can function as nanoscale magnets was an important development in this regard. These molecules act as single-domain magnetic particles that, below their blocking temperature, exhibit magnetization hysteresis, a classical property of macroscopic magnets. Such ‘single-molecule magnets’ (SMMs) straddle the interface between classical and quantum mechanical behaviour because they also display quantum tunnelling of magnetization and quantum phase interference. Quantum tunnelling of magnetization can be advantageous for some potential applications of SMMs, for example, in providing the quantum superposition of states required for quantum computing. However, it is a disadvantage in other applications, such as information storage, where it would lead to information loss. Thus it is important to both understand and control the quantum properties of SMMs. Here we report a supramolecular SMM dimer in which antiferromagnetic coupling between the two components results in quantum behaviour different from that of the individual SMMs. Our experimental observations and theoretical analysis suggest a means of tuning the quantum tunnelling of magnetization in SMMs. This system may also prove useful for studying quantum tunnelling of relevance to mesoscopic antiferromagnets.
Journal of the American Chemical Society | 2011
Yun-Nan Guo; Gong-Feng Xu; Wolfgang Wernsdorfer; Liviu Ungur; Yang Guo; Jinkui Tang; Hongjie Zhang; Liviu F. Chibotaru; Annie K. Powell
The high axiality and Ising exchange interaction efficiently suppress quantum tunneling of magnetization of an asymmetric dinuclear Dy(III) complex, as revealed by combined experimental and theoretical investigations. Two distinct regimes of blockage of magnetization, one originating from the blockage at individual Dy sites and the other due to the exchange interaction between the sites, are separated for the first time. The latter contribution is found to be crucial, allowing an increase of the relaxation time by 3 orders of magnitude.
Angewandte Chemie | 2009
Po-Heng Lin; Tara J. Burchell; Liviu Ungur; Liviu F. Chibotaru; Wolfgang Wernsdorfer; Muralee Murugesu
Single-molecule magnets (SMMs) continue to be an attractive research field because of their unique and intriguing properties and potential applications in high-density data storage technologies and molecular spintronics. The anisotropic barrier (U) of an SMM is derived from a combination of an appreciable spin ground state (S) and uniaxial Ising-like magneto-anisotropy (D). The magnet-like behavior can be observed by slow relaxation of the magnetization below the blocking temperature. Since the discovery of SMMs in the early 1990s, this assumption has formed the basis for the understanding of the origin of the anisotropic barrier. However, in recent years the development of novel lanthanide-only SMMs that challenge and defy this theory pose a number of questions: How can slow relaxation of the magnetization be observed in a nonmagnetic state complex? Why are large energy barriers seen for mononuclear lanthanide(III) complexes? To answer such important questions, it is vital to investigate novel SMMs with high magnetoanisotropy for which the influence of the large negative D value could result in higher anisotropic barriers. Clearly lanthanide-based polynuclear systems are an important avenue to explore in the pursuit of SMMs with higher anisotropic barriers, because of the strong spin–orbit coupling commonly observed in 4f systems. However, lanthanide-only SMMs are rare. The majority of reported SMMs have been prepared with transition-metal ions, although the recent application of a mixed transition-metal/ lanthanide strategy also yielded many structurally and magnetically interesting systems. The scarcity of lanthanide-only SMMs results from the difficulty in promoting magnetic interactions between the lanthanide ions. The interactions can, however, be enhanced by overlapping bridging ligand orbitals. In addition, fast quantum tunneling of the magnetization (QTM), which is common for lanthanide systems, generally prevents the isolation of SMMs with high anisotropic energy barriers. Our recent work suggests that dysprosium(III) ions may hold the key to obtaining high-blocking-temperature lanthanide-only SMMs. When an appropriate ligand system is employed, it is possible to exploit the large intrinsic magnetoanisotropy, high spin, and reduced QTM that dysprosium(III) ions offer. Recently, we have focused our attention towards the synthesis of dysprosium(III) cluster complexes with 1,2bis(2-hydroxy-3-methoxybenzylidene) hydrazone (H2bmh) and 3-methoxysalicylaldehyde hydrazone (Hmsh) as chelating agents (see Figure S1 in the Supporting Information). This strategy has proven to be successful and has led to a polynuclear lanthanide SMM with a record anisotropic barrier. Herein, we report the synthesis, structure, and magnetism of a tetranuclear dysprosium(III) SMM that exhibits the largest relaxation barrier seen for any polynuclear SMM to date. A suspension of DyCl3·6H2O and o-vanillin (2:1 ratio) in DMF/CH2Cl2 (1:5 ratio) was treated with 4 equivalents of Et3N. The solution was stirred for 1 minute, and then 4 equivalents of N2H4·H2O was added. The resulting yellow solution yielded rectangular, orange-yellow crystals of the tetranuclear complex [Dy4(m3-OH)2(bmh)2(msh)4Cl2] (1) in 19.1% yield after 2 days. The msh and bmh ligands were formed in situ by the reaction of o-vanillin and hydrazine. The slight excess of hydrazine is essential for the formation of both ligands; when an excess of o-vanillin was used instead, no product was isolated. The basic conditions promote the deprotonation of the ligands and the formation of bridging hydroxide anions. Single-crystal X-ray analysis revealed the centrosymmetric complex 1 (Figure 1), which has a defect-dicubane central core. The four coplanar Dy ions are bridged by two m3-OH ligands displaced above and below (0.922 ) the Dy4 plane with Dy O bond lengths of 2.362(6), 2.302(6), and 2.447(6) andDy O Dy angles of 106.5(2), 107.7(2), and 105.7(2)8, and also by a combination of four phenoxide oxygen atoms [Dy O 2.312(2), 2.298(6), 2.448(6), 2.345(6) ] and two diaza bridging groups [Dy N 2.508(8), 2.564(8) ]. Close inspection of the packing arrangement reveals stacking of the [*] P.-H. Lin, Dr. T. J. Burchell, Dr. M. Murugesu Chemistry Department, University of Ottawa and Centre for Catalysis Research and Innovation D’Iorio Hall, 10 Marie Curie, Ottawa, ON, K1N6N5 (Canada) Fax: (+1)613-562-5170 E-mail: [email protected] Homepage: http://www.science.uottawa.ca/~mmuruges/
Nature Chemistry | 2013
Robin J. Blagg; Liviu Ungur; Floriana Tuna; James Speak; Priyanka Comar; David Collison; Wolfgang Wernsdorfer; Eric J. L. McInnes; Liviu F. Chibotaru; Richard E. P. Winpenny
Single-molecule magnets are compounds that exhibit magnetic bistability caused by an energy barrier for the reversal of magnetization (relaxation). Lanthanide compounds are proving promising as single-molecule magnets: recent studies show that terbium phthalocyanine complexes possess large energy barriers, and dysprosium and terbium complexes bridged by an N2(3-) radical ligand exhibit magnetic hysteresis up to 13 K. Magnetic relaxation is typically controlled by single-ion factors rather than magnetic exchange (whether one or more 4f ions are present) and proceeds through thermal relaxation of the lowest excited states. Here we report polylanthanide alkoxide cage complexes, and their doped diamagnetic yttrium analogues, in which competing relaxation pathways are observed and relaxation through the first excited state can be quenched. This leads to energy barriers for relaxation of magnetization that exceed 800 K. We investigated the factors at the lanthanide sites that govern this behaviour.
Journal of the American Chemical Society | 2011
Jérôme Long; Fatemah Habib; Po-Heng Lin; Ilia Korobkov; Gary D. Enright; Liviu Ungur; Wolfgang Wernsdorfer; Liviu F. Chibotaru; Muralee Murugesu
A family of five dinuclear lanthanide complexes has been synthesized with general formula [Ln(III)(2)(valdien)(2)(NO(3))(2)] where (H(2)valdien = N1,N3-bis(3-methoxysalicylidene)diethylenetriamine) and Ln(III) = Eu(III)1, Gd(III)2, Tb(III)3, Dy(III)4, and Ho(III)5. The magnetic investigations reveal that 4 exhibits single-molecule magnet (SMM) behavior with an anisotropic barrier U(eff) = 76 K. The step-like features in the hysteresis loops observed for 4 reveal an antiferromagnetic exchange coupling between the two dysprosium ions. Ab initio calculations confirm the weak antiferromagnetic interaction with an exchange constant J(Dy-Dy) = -0.21 cm(-1). The observed steps in the hysteresis loops correspond to a weakly coupled system similar to exchange-biased SMMs. The Dy(2) complex is an ideal candidate for the elucidation of slow relaxation of the magnetization mechanism seen in lanthanide systems.
Nature Materials | 2011
Matias Urdampilleta; Svetlana Klyatskaya; Jean-Pierre Cleuziou; Mario Ruben; Wolfgang Wernsdorfer
Magnetic molecules are potential building blocks for the design of spintronic devices. Moreover, molecular materials enable the combination of bottom-up processing techniques, for example with conventional top-down nanofabrication. The development of solid-state spintronic devices based on the giant magnetoresistance, tunnel magnetoresistance and spin-valve effects has revolutionized magnetic memory applications. Recently, a significant improvement of the spin-relaxation time has been observed in organic semiconductor tunnel junctions, single non-magnetic molecules coupled to magnetic electrodes have shown giant magnetoresistance and hybrid devices exploiting the quantum tunnelling properties of single-molecule magnets have been proposed. Herein, we present an original spin-valve device in which a non-magnetic molecular quantum dot, made of a single-walled carbon nanotube contacted with non-magnetic electrodes, is laterally coupled through supramolecular interactions to TbPc(2) single-molecule magnets (Pc=phthalocyanine). Their localized magnetic moments lead to a magnetic field dependence of the electrical transport through the single-walled carbon nanotube, resulting in magnetoresistance ratios up to 300% at temperatures less than 1 K. We thus demonstrate the functionality of a supramolecular spin valve without magnetic leads. Our results open up prospects of new spintronic devices with quantum properties.
Nature | 2012
Romain Vincent; Svetlana Klyatskaya; Mario Ruben; Wolfgang Wernsdorfer; Franck Balestro
Quantum control of individual spins in condensed-matter devices is an emerging field with a wide range of applications, from nanospintronics to quantum computing. The electron, possessing spin and orbital degrees of freedom, is conventionally used as the carrier of quantum information in proposed devices. However, electrons couple strongly to the environment, and so have very short relaxation and coherence times. It is therefore extremely difficult to achieve quantum coherence and stable entanglement of electron spins. Alternative concepts propose nuclear spins as the building blocks for quantum computing, because such spins are extremely well isolated from the environment and less prone to decoherence. However, weak coupling comes at a price: it remains challenging to address and manipulate individual nuclear spins. Here we show that the nuclear spin of an individual metal atom embedded in a single-molecule magnet can be read out electronically. The observed long lifetimes (tens of seconds) and relaxation characteristics of nuclear spin at the single-atom scale open the way to a completely new world of devices in which quantum logic may be implemented.
Journal of the American Chemical Society | 2016
Jiang Liu; Yan-Cong Chen; Jun-Liang Liu; Veacheslav Vieru; Liviu Ungur; Jian-Hua Jia; Liviu F. Chibotaru; Yanhua Lan; Wolfgang Wernsdorfer; Song Gao; Xiao-Ming Chen; Ming-Liang Tong
Single-molecule magnets (SMMs) with a large spin reversal barrier have been recognized to exhibit slow magnetic relaxation that can lead to a magnetic hysteresis loop. Synthesis of highly stable SMMs with both large energy barriers and significantly slow relaxation times is challenging. Here, we report two highly stable and neutral Dy(III) classical coordination compounds with pentagonal bipyramidal local geometry that exhibit SMM behavior. Weak intermolecular interactions in the undiluted single crystals are first observed for mononuclear lanthanide SMMs by micro-SQUID measurements. The investigation of magnetic relaxation reveals the thermally activated quantum tunneling of magnetization through the third excited Kramers doublet, owing to the increased axial magnetic anisotropy and weaker transverse magnetic anisotropy. As a result, pronounced magnetic hysteresis loops up to 14 K are observed, and the effective energy barrier (Ueff = 1025 K) for relaxation of magnetization reached a breakthrough among the SMMs.
Nature Materials | 2003
C. Thirion; Wolfgang Wernsdorfer; D. Mailly
Magnetization reversal in magnetic particles is one of the fundamental issues in magnetic data storage. Technological improvements require the understanding of dynamical magnetization reversal processes at nanosecond time scales1. New strategies are needed to overcome current limitations. For example, the problem of thermal stability of the magnetization state (superparamagnetic limit) can be pushed down to smaller particle sizes by increasing the magnetic anisotropy2. High fields are then needed to reverse the magnetization, which are difficult to achieve in current devices. Here we propose a new method to overcome this limitation. A constant applied field, well below the switching field, combined with a radio-frequency (RF) field pulse can reverse the magnetization of a nanoparticle. The efficiency of this method is demonstrated on a 20-nm-diameter cobalt particle by using the microSQUID (superconducting quantum interference device) technique3. Other applications of this method might be nucleation or depinning of domain walls.